Skip to main content

Sources Contributing to Radionuclides in the Environment: With Focus on Radioactive Particles

  • Chapter
Radionuclides in the Environment

Abstract

To assess environmental impact and risks associated with radioactive contamination of ecosystems, links must be established between the source term and deposition, ecosystem transfer, biological uptake and effects in exposed organisms. In transport, dose, impact and risk models, information on the source term and the deposition densities is therefore an essential input. Following severe nuclear events, a major fraction of refractory radionuclides can be present as radioactive particles. The particle characteristics will depend on the source and the release scenarios, and such information should be included in the source term. Furthermore, assessments are traditionally based on average bulk mass or surface activity concentrations of radionuclides in environmental compartments (Bq/kg, Bq/m2 or Bq/L), assuming that a limited number of samples are representative. Localised heterogeneities such as particles will, however, be unevenly distributed, and representative sampling can be questionable. Due to structural properties, dissolution of radionuclides from particles prior to measurements may be partial. For areas affected by particle contamination, the inventories can be underestimated, and impact and risk assessments may suffer from unacceptable large uncertainties if radioactive particles are ignored. The present chapter will focus on key sources contributing to radioactivity in the environment, especially radioactive particles, and will summarise the most important particle characterisation techniques available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe Y, Iizawa Y, Terada Y, Adachi K, Igarashi Y, Nakai I (2014) Detection of uranium and chemical state analysis of individual radioactive microparticles emitted from the Fukushima nuclear accident using Multiple Synchrotron Radiation X-ray analyses. Analyt Chem 86:8521–8525

    Article  CAS  Google Scholar 

  • Adachi K, Kajino M, Zaizen Y, Igarashi Y (2013) Emission of spherical cesium-bearing particles from an early stage of the Fukushima nuclear accident. Sci Rep 3:2554

    Google Scholar 

  • Admon U (2009) Single particle handling and analysis. In: Oughton DH, Kasparov VA (eds) Radioactive particles in the environment. The NATO Science for Peace and Security program: Springer

    Google Scholar 

  • Alsecz A, Osan J, Kurunczi S, Alfoldy B, Varhegyi A, Torok S (2007) Analytical performance of different X-ray spectroscopic techniques for the environmental monitoring of the recultivated uranium mine site. Spectrochim Acta B-Atom Spectrosc 62:769–776

    Article  CAS  Google Scholar 

  • AMAP (1997) Arctic pollution issues: Radioactive contamination. sterts: Norwegian Radiation Protection Authority

    Google Scholar 

  • AMAP (2004) AMAP assessment 2002: radioactivity in the Arctic. Arctic Monitoring and Assessment Programme, Oslo, Norway, pp 1–100

    Google Scholar 

  • Anspaugh LR, Church BW (1986) Historical estimates of external g exposure and collective external g exposure from testing at the Nevada Test Site. 1. Test series through Hardtack II, 1958. Health Phys 51:35–51

    Article  CAS  Google Scholar 

  • Appleby LJ, Luttrell SJ (1993) Case-studies of significant radioactive releases. In: Warner F, Harrison RM (eds) Radioecology after Chernobyl. Wiley, Chichester, UK

    Google Scholar 

  • Arnold L (1992) The Windscale Fire 1957. Anatomy of a Nuclear Accident. Macmillan, London

    Google Scholar 

  • Ault AP, Peters TM, Sawvel EJ, Casuccio GS, Willis RD, Norris GA, Grassian VH (2012) Single-particle SEM-EDX analysis of iron-containing coarse particulate matter in an urban environment: Sources and distribution of iron within Cleveland, Ohio. Environ Sci Technol 46:4331–4339

    Article  CAS  Google Scholar 

  • Baglan N, Cossonnet C, Pitet P, Cavadore D, Exmelin L, Berard P (2000) On the use of ICP-MS for measuring plutonium in urine. J Radioanalyt Nucl Chem 243:397–401

    Article  CAS  Google Scholar 

  • Baglan N, Hemet P, Pointurier F, Chiappini R (2004) Evaluation of a single collector, double focusing sector field inductively coupled plasma mass spectrometer for the determination of U and Pu concentrations and isotopic compositions at trace level. J Radioanalyt Nucl Chem 261:609–617

    Article  CAS  Google Scholar 

  • Batuk ON, Conradson SD, Aleksandrov ON, Boukhalfa H, Burakov BE, Clark DL, Czerwinski KR, Felmy AR, Lezama-Pacheco JS, Kalmykov SN, Moore DA, Myasoedov BF, Reed DT, Reilly DD, Roback RC, Vlasova IE, Webb SM, Wilkerson MP (2015) Multiscale speciation of U and Pu at Chernobyl, Hanford, Los Alamos, McGuire AFB, Mayak, and Rocky Flats. Environ Sci Technol 49:6474–84

    Article  CAS  Google Scholar 

  • Boehnke A, Treutler HC, Freyer K, Schubert M, Holger W (2005) Localisation and identification of radioactive particles in solid samples by means of a nuclear track technique. Radiat Measure 40:650–653

    Article  CAS  Google Scholar 

  • Bolsunovsky AY, Tcherkezian VO (2001) Hot particles of the Yenisei River flood plain, Russia. J Environ Radioact 57:167–174

    Article  CAS  Google Scholar 

  • Boulyga SF, Becker JS (2001) Determination of uranium isotopic composition and U-236 content of soil samples and hot particles using inductively coupled plasma mass spectrometry. Fresenius J Anal Chem 370:612–617

    Article  CAS  Google Scholar 

  • Bowen J, Glover S, Spitz H (2013) Morphology of actinide-rich particles released from the BOMARC accident and collected from soil post remediation. J Radioanal Nucl Chem 296:853–857

    Article  CAS  Google Scholar 

  • Bunzl K (1997) Probability for detecting hot particles in environmental samples by sample splitting. Analyst 122:653–656

    Article  CAS  Google Scholar 

  • Bunzl K (1998) Detection of radioactive hot particles in environmental samples by repeated mixing. Appl Radiat Isot 49:1625–1631

    Article  CAS  Google Scholar 

  • Bunzl K, Tschiersch J (2001) Detection of radioactive hot particles in environmental samples using a Marinelli-beaker measuring geometry. Radiochim Acta 89:599–604

    Article  CAS  Google Scholar 

  • Burns PA, Cooper MB, Johnston PN, Martin LJ, Willims GA (1994) Determination of the ratios of Pu-239 and Pu-240 to Am-241 for nuclear-weapons test sites in Australia. Health Phys 67:226–232

    Article  CAS  Google Scholar 

  • Burns PA, Cooper MB, Lokan KH, Wilks MJ, Williams GA (1995) Characteristics of plutonium and americium contamination at the former UK atomic weapons test ranges at Maralinga and Emu. Appl Radiat Isotop 46:1099–1107

    Article  CAS  Google Scholar 

  • Chamberlain AC, Dunster HJ (1958) Deposition of radioactivity in North-West England from the accident at windscale. Nature 182:629–630

    Article  CAS  Google Scholar 

  • Chuguevsii AV, Sukhorukov FV, Mel'gunov MS, Makarova IV, Titov AT (2010) “Hot” particles of the Yenisei River: Radioisotope composition, structure, and behavior in natural conditions. Doklady Earth Sci 430:51–53

    Article  CAS  Google Scholar 

  • Conradson SD (2000) XAFS—A technique to probe local structure. Los Alamos Sci 26:422–435

    Google Scholar 

  • Cooper MB, Burns PA, Tracy BL, Wilks MJ, Willams GA (1994) Characterization of plutonium contamination at the former nuclear-weapons testing range at Maralinga in South-Australia. J Radioanal Nucl Chem 177:161–184

    Article  CAS  Google Scholar 

  • Crean DE, Livens FR, Stennett MC, Grolimund D, Borca CN, Hyatt NC (2014) Microanalytical X-ray imaging of depleted uranium speciation in environmentally aged munitions residues. Environ Sci Technol 48:1467–1474

    Article  CAS  Google Scholar 

  • Cresswell AJ, Sanderson DCW (2012) Evaluating airborne and ground based gamma spectrometry methods for detecting particulate radioactivity in the environment: a case study of Irish Sea beaches. Sci Total Environ 437:285–296

    Article  CAS  Google Scholar 

  • Crocker GR, Oconnor JD, Freiling EC (1966) Physical and radiochemical properties of fallout particles. Health Phys 12:1099

    Article  CAS  Google Scholar 

  • Danesi PR (1998) Hot particles and the cold war. IAEA Bull Vienna

    Google Scholar 

  • Danesi PR, Moreno J, Makarewicz M, Radecki Z (2002) Residual radioactivity in the terrestrial environment of the Mururoa and Fangataufa Atolls nuclear weapon test sites. J Radioanal Nucl Chem 253:53–65

    Article  CAS  Google Scholar 

  • Danesi PR, Bleise A, Burkart W, Cabianca T, Campbell MJ, Makarewicz M, Moreno J, Tuniz C, Hotchkis M (2003a) Isotopic composition and origin of uranium and plutonium in selected soil samples collected in Kosovo. J Environ Radioact 64:121–131

    Article  CAS  Google Scholar 

  • Danesi PR, Markowicz A, Chinea-Cano E, Burkart W, Salbu B, Donohue D, Ruedenauer F, Hedberg M, Vogt S, Zahradnik P, Ciurapinski A (2003b) Depleted uranium particles in selected Kosovo samples. J Environ Radioact 64:143–154

    Article  CAS  Google Scholar 

  • Darley PJ, Charles MW, Fell TP, Harrison JD (2003) Doses and risks from the ingestion of Dounreay fuel fragments. Radiat Prot Dosimet 105:49–54

    Article  CAS  Google Scholar 

  • De Nolf W, Jaroszewicz J, Terzano R, Lind OC, Salbu B, Vekemans B, Janssens K, Falkenberg G (2009) Possibilities and limitations of synchrotron X-ray powder diffraction with double crystal and double multilayer monochromators for microscopic speciation studies. Spectrochim Acta B: Atom Spectrosc 64:775–781

    Article  CAS  Google Scholar 

  • Denecke MA, Borchert M, Denning RG, De Nolf W, Falkenberg G, Honig S, Klinkenberg GM, Kvashnina K, Neumeier S, Patommel J, Petersmann T, Pruessmann T, Ritter S, Schroer CG, Stephan S, Villanova J, Vitova T, Wellenreuther G (2012) Highly resolved synchrotron-based investigations related to nuclear waste disposal. Act Nucl Energ Mat 1444:269–280

    Google Scholar 

  • Dennis F, Morgan G, Henderson F (2007) Dounreay hot particles: the story so far. J Radiol Prot 27:A3–A11

    Article  Google Scholar 

  • Dobrovolsky E, Lyalko V (1995) Acidification of soils and radioactive hot particles behavior: a macrokinetic approach. Water Air Soil Pollut 85:767–772

    Article  CAS  Google Scholar 

  • Drell S, Peurifoy B (1994) Technical issues of a nuclear test ban. Annu Rev Nucl Part Sci 44:285–327

    Article  CAS  Google Scholar 

  • Eriksson M, Osan J, Jernstrom J, Wegrzynek D, Simon R, Chinea-Cano E, Markowicz A, Bamford S, Tamborini G, Torok S, Falkenberg G, Alsecz A, Dahlgaard H, Wobrauschek P, Streli C, Zoeger N, Betti M (2005) Source term identification of environmental radioactive Pu/U particles by their characterization with non-destructive spectrochemical analytical techniques. Spectrochim Acta Part B: Atom Spectrosc 60:455–469

    Article  CAS  Google Scholar 

  • Eriksson M, Lindhal P, Roos P, Dahlgaard H, Holm E (2008) U, Pu, and Am nuclear signatures of the Thule hydrogen bomb debris. Environ Sci Technol 42:4717–4722

    Article  CAS  Google Scholar 

  • Eroglu AE, Mcleod CW, Leonard KS, Mccubbin D (1998) Determination of plutonium in seawater using co-precipitation and inductively coupled plasma mass spectrometry with ultrasonic nebulisation. Spectrochim Acta Part B: Atom Spectrosc 53:1221–1233

    Article  Google Scholar 

  • Fifield LK (1999) Accelerator mass spectrometry and its applications. Rep Prog Phys 62:1223–1274

    Article  CAS  Google Scholar 

  • Fifield LK (2000) Advances in accelerator mass spectrometry. Nucl Instrum Method Phy Res Sec B-Beam Interact Mat Atom 172:134–143

    Article  CAS  Google Scholar 

  • Garland JA, Wakeford R (2007) Atmospheric emissions from the windscale accident of October 1957. Atmos Environ 41:3904–3920

    Article  CAS  Google Scholar 

  • Gerdes A, Weyer S, Brey G, Durakovic A, Zimmermann I (2004) Monitoring depleted Uranium contamination in the biosphere of Iraq using MC-ICP-MS. Geochim Cosmochim Acta 68:A506

    Google Scholar 

  • Gruning C, Huber G, Klopp P, Kratz JV, Kunz P, Passler G, Trautmann N, Waldek A, Wendt K (2004) Resonance ionization mass spectrometry for ultratrace analysis of plutonium with a new solid state laser system. Int J Mass Spectrosc 235:171–178

    Article  CAS  Google Scholar 

  • Gwynn JP, Nikitin A, Shershakov V, Heldal HE, Lind B, Teien HC, Lind OC, Sidhu RS, Bakke G, Kazennov A, Grishin D, Fedorova A, Blinova O, Svaeren I, Lee Liebig P, Salbu B, Wendell CC, Stralberg E, Valetova N, Petrenko G, Katrich I, Logoyda I, Osvath I, Levy I, Bartocci J, Pham MK, Sam A, Nies H, Rudjord AL (2015) Main results of the 2012 joint Norwegian–Russian expedition to the dumping sites of the nuclear submarine K-27 and solid radioactive waste in Stepovogo Fjord, Novaya Zemlya. J Environ Radioact. doi:10.1016/j.jenvrad.2015.02.003

    Google Scholar 

  • Hamilton TF, Jernstroem J, Martinelli RE, Kehl SR, Eriksson M, Williams RW, Bieleski M, Rivers AN, Brown TA, Tumey SJ, Betti M (2009) Frequency distribution, isotopic composition and physical characterization of plutonium-bearing particles from the Fig-Quince zone on Runit Island, Enewetak Atoll. J Radioanal Nucl Chem 282:1019–1026

    Article  CAS  Google Scholar 

  • Heft RE (1970) Characterization of radioactive particles from nuclear weapons tests. Adv Chem Ser 254

    Google Scholar 

  • IAEA (1998) Radiological conditions at the Semipalatinsk test site, Kazakhstan: preliminary assessment and recommendations for further studies. International Atomic Energy Agency, Vienna, pp 1–43

    Google Scholar 

  • IAEA CRP (2011) Radioactive particles in the environment: sources, particle characteristics, and analytical techniques. IAEA-TECDOC Vienna

    Google Scholar 

  • Jakeman D (1986) Notes of the level of radioactive contamination in the Sellafield area arising from discharges in the Early 1950s. Atomic Energy Establishment, Winfrith

    Google Scholar 

  • Jernstrom J, Eriksson M, Osan J, Tamborini G, Torok S, Simon R, Falkenberg G, Alsecz A, Betti M (2004) Non-destructive characterisation of low radioactive particles from Irish Sea sediment by micro X-ray synchrotron radiation techniques: micro X-ray fluorescence (mu-XRF) and micro X-ray absorption near edge structure (mu-XANES) spectroscopy. J Analyt Atom Spectrosc 19:1428–1433

    Article  CAS  Google Scholar 

  • Jimenez-Ramos MC, Barros H, Garcia-Tenorio R, Garcia-Leon M, Vioque I, Manjon G (2007) On the presence of enriched uranium in hot-particles from the terrestrial area affected by the Palomares accident (Spain). Environ Pollut 145:391–394

    Article  CAS  Google Scholar 

  • JNREG (2004) Impacts on man and the environment in Northern areas from hypothetical accidents at “Mayak” PA, Urals, Russia, sterts, Joint Norwegian-Russian expert group for investigation of radioactive contamination in the Northern areas

    Google Scholar 

  • Kashparov VA, Lundin SM, Zvarych SI, Yoshchenko VI, Levchuk SE, Khomutini YV, Maloshtan IM, Protsak VP (2003) Territory contamination with the radionuclides representing the fuel component of Chernobyl fallout. Sci Total Environ 317:105–119

    Article  CAS  Google Scholar 

  • Kasparov VA, Oughton DH, Protsak VP, Zvarisch SI, Levchuk SE (1999) Kinetics of fuel particle weathering and 90 Sr mobility in the Chernobyl 30 km exclusion zone. Health Phys 76:251–259

    Article  Google Scholar 

  • Kersting AB, Efurd DW, Finnegan DL, Rokop DJ, Smith DK, Thompson JL (1999) Migration of plutonium in ground water at the Nevada test site. Nature 397:56–59

    Article  CAS  Google Scholar 

  • Krey PW (1967) Plutonium-238 from Snap-9A Burnup 39. Trans Am Nucl Soc 10

    Google Scholar 

  • Krey PW, Leifer R, Benson WK, Dietz LA, Coluzza JL, Hendrikson HC (1979) Atmospheric burnup of the Cosmos-954 reactor. Science 205:583–585

    Article  CAS  Google Scholar 

  • Landa ER, Stieff LR, Germani MS, Tanner AB, Evans JR (1994) Intense alpha-particle emitting crystallites in uranium mill wastes. Nucl Geophys 8:443–454

    CAS  Google Scholar 

  • Lee MH, Clark SB (2005) Activities of Pu and Am isotopes and isotopic ratios in a soil contaminated by weapons-grade plutonium. Environ Sci Technol 39:5512–5516

    Article  CAS  Google Scholar 

  • Lehto J, Hou XL (2011) Chemistry and analysis of radionuclides. Wiley-VCH, Weinheim

    Google Scholar 

  • Leifer R, Juzdan ZR, Kelly WR, Fassett JD, Eberhardt KR (1987) Detection of uranium from Cosmos-1402 in the stratosphere. Science 238:512–514

    Article  CAS  Google Scholar 

  • Leonard KS, McCubbin D, Lovett MB (1995) Physico-chemical characterisation of radionuclides discharged from a nuclear establishment. Sci Total Environ 175:9–24

    Article  CAS  Google Scholar 

  • Lind OC (2006) Characterisation of radioactive particles in the environment using advanced techniques. PhD Thesis, Norwegian University of Life Sciences, pp 1–191

    Google Scholar 

  • Lind OC, Oughton D, Salbu B, Skipperud L, Sickel M, Brown JE, Fifield LK, Tims S (2006) Transport of low 240 Pu/ 239 Pu atom ratio plutonium-species in the Ob and Yenisey Rivers to the Kara Sea. Earth Planet Sci Lett 251:33–43

    Article  CAS  Google Scholar 

  • Lind OC, Salbu B, Janssens K, Proost K, Garcia-Leon M, Garcia-Tenorio R (2007) Characterization of U/Pu particles originating from the nuclear weapon accidents at Palomares, Spain, 1966 and Thule, Greenland, 1968. Sci Total Environ 376:294–305

    Article  CAS  Google Scholar 

  • Lind OC, Salbu B, Skipperud L, Janssens K, Jaroszewicz J, De Nolf W (2009) Solid state speciation and potential bioavailability of depleted uranium particles from Kosovo and Kuwait. J Environ Radioact 100:301–307

    Article  CAS  Google Scholar 

  • Lind OC, Oughton DH, De Nolf W, Janssens K, Stromman G, Bolsunovsky ALKF, Melgunov M, Salbu B (2011a) Characterisation of individual radioactive particles from Krasnoyarsk-26. In: Barescut JC (ed) International Conference on Radioecology and Environmental Radioactivity, Hamilton, Canada

    Google Scholar 

  • Lind OC, Salbu B, Janssens K (2011b) Microanalytical characterisation of radioactive TENORM particles. In: Barescut JC (ed) International conference on radioecology and environmental radioactivity, Hamilton, Canada

    Google Scholar 

  • Lind OC, De Nolf W, Janssens K, Salbu B (2013a) Micro-analytical characterisation of radioactive heterogeneities in samples from Central Asian TENORM sites. J Environ Radioact 123:63–70

    Article  CAS  Google Scholar 

  • Lind OC, Stegnar P, Tolonutov B, Rosseland BO, Stromman G, Uralbekov B, Usubalieva A, Solomatina A, Gwynn JP, Lespukh E, Salbu B (2013b) Environmental impact assessment of radionuclide and metal contamination at the former U site at Kadji Sai, Kyrgyzstan. J Environ Radioact 123:37–49

    Article  CAS  Google Scholar 

  • Lind OC, Cagno S, Falkenberg G, Janssens K, Jarszewicz J, Nuyts G, Priest N, Audet M, Vanmeert F, Salbu B (2014) Low-level radioactive river sediment particles originating from the Chalk River nuclear site carry a mixture of radionuclides and metals. International Conference on Radioecology and Environmental Radioactivity, Barcelona, Spain

    Google Scholar 

  • Mamuro T, Fujita A, Yoshikawa K, Matsunami T (1962) Microscopic examination of highly radioactive fall-out particles. Nature 196:529–531

    Article  Google Scholar 

  • Mamuro T, Fujita A, Matsunam T (1965) Microscope examination of highly radioactive fallout particles from first Chinese nuclear test explosion. Health Phys 11:1097–1101

    Article  CAS  Google Scholar 

  • Mamuro T, Yoshikawa K, Matsunami T, Fujita A (1966) Radionuclide fractionation in debris from a land surface burst. Health Phys 12:757–763

    Article  CAS  Google Scholar 

  • Maucec A, De Meijer RJ, Rigollet C, Hendriks PHGM, Jones DG (2004) Detection of radioactive particles offshore by mu-ray spectrometry—Part I: Monte Carlo assessment of detection depth limits. Nucl Instrum Methods Phys Res A 525:593–609

    Article  CAS  Google Scholar 

  • McCartney M, Kershaw PJ, Woodhead DS, Denoon DC (1994) Artificial radionuclides in the surface sediments of the Irish Sea, 1968–1988. Sci Total Environ 141:103–138

    Article  CAS  Google Scholar 

  • McDowell LM, Whicker FW (1978) Size characteristics of plutonium particles in rocky flats soil. Health Phys 35:293–299

    Article  CAS  Google Scholar 

  • McLaughlin JP, Vintro LL, Smith KJ, Mitchell PI, Zunic ZS (2003) Actinide analysis of a depleted uranium penetrator from a 1999 target site in southern Serbia. J Environ Radioact 64:155–165

    Article  CAS  Google Scholar 

  • Mian Z, Ramana MV, Rajaraman R (2001) Plutonium dispersal and health hazards from nuclear weapon accidents. Curr Sci 80:1275–1284

    CAS  Google Scholar 

  • Mongan TR, Ripple SR, Brorby GP, diTommaso DG (1996a) Plutonium releases from the 1957 fire at Rocky Flats. Health Phys 71:510–521

    Article  CAS  Google Scholar 

  • Mongan TR, Ripple SR, Winges KD (1996b) Plutonium release from the 903 pad at rocky flats. Health Phys 71:522–531

    Article  CAS  Google Scholar 

  • NCRPM (2009) Ionizing radiation exposure of the population of the United States. National Council on Radiation Protection Report. National Council on Radiation Protection and Measurements Bethesda, USA

    Google Scholar 

  • Nees WL, Corley JP (1973) Environmental surveillance at Hanford for CY-1973. Pacific Northwest Laboratories, Richland, Washington

    Google Scholar 

  • Novikov AP, Kalmykov SN, Utsunomiya S, Ewing RC, Horreard F, Merkulov A, Clark SB, Tkachev VV, Myasoedov BF (2006) Colloid transport of plutonium in the far-field of the Mayak Production Association, Russia. Science 314:638–641

    Article  CAS  Google Scholar 

  • Oughton DH, Salbu B, Brand TL, Day JP, Aarkrog A (1993) Under-determination of Sr-90 in soils containing particles of irradiated uranium oxide fuel. Analyst 118:1101–1105

    Article  CAS  Google Scholar 

  • Oughton DH, Fifield LK, Day JP, Cresswell RC, Skipperud L, Di Tada ML, Salbu B, Strand P, Drozcho E, Mokrov Y (2000) Plutonium from Mayak: measurement of isotope ratios and activities using accelerator mass spectrometry. Environ Sci Technol 34:1938–1945

    Article  CAS  Google Scholar 

  • Oughton DH, Skipperud L, Fieield LK, Cresswell RG, Salbu B, Day P (2004) Accelerator mass spectrometry measurement of Pu-240/Pu-239 isotope ratios in Novaya Zemlya and Kara Sea sediments. Appl Radiat Isotopes 61:249–253

    Article  CAS  Google Scholar 

  • Pointurier F, Barglan N, Hemet P (2004) Ultra low-level measurements of actinides by sector field ICP-MS. Appl Radiat Isotopes 60:561–566

    Article  CAS  Google Scholar 

  • Pollanen R, Klemola S, Ikaheimonen TK, Rissanen K, Juhanoja J, Paavolainen S, Likonen J (2001) Analysis of radioactive particles from the Kola Bay area. Analyst 126:724–730

    Article  CAS  Google Scholar 

  • Poston TM, Peterson RE, Cooper AT (2007) Past radioactive particle contamination in the Columbia River at the Hanford site, USA. J Radiol Prot 27:A45

    Article  CAS  Google Scholar 

  • Ranebo Y, Eriksson M, Tamborini G, Niagolova N, Bildstein O, Betti M (2007) The use of SIMS and SEM for the characterization of individual particles with a matrix originating from a nuclear weapon. Microsc Microanal 13:179–190

    Article  CAS  Google Scholar 

  • Sajih M, Livens FR (2010) Identification and characterisation of radioactive particles in salt marsh sediments. In: Rao L, Tobin JG, Shuh DK (eds) Actinides 2009. Iop Publishing Ltd., Bristol

    Google Scholar 

  • Sakaguchi A, Steier P, Takahashi Y, Yamamoto M (2014) Isotopic compositions of U-236 and Pu Isotopes in “Black Substances” collected from roadsides in fukushima prefecture: Fallout from the Fukushima Dai-ichi Nuclear Power Plant Accident. Environ Sci Technol 48:3691–3697

    Article  CAS  Google Scholar 

  • Salbu B (2000a) Source-related characteristics of radioactive particles: a review. Radiat Protect Dosimetry 92:49–54

    Article  CAS  Google Scholar 

  • Salbu B (2000b) Speciation of radionuclides in the environment. In: Meyers RA (ed) Encyclopedia of analytical chemistry. Wiley, Chichester, UK

    Google Scholar 

  • Salbu B (2001) Hot particles-a challenge within radioecology. J Environ Radioact 53:267–268

    Article  CAS  Google Scholar 

  • Salbu B (2009) Challenges in radioecology. J Environ Radioact 100:1086–1091

    Article  CAS  Google Scholar 

  • Salbu B, Kudo A (2001) Actinides associated with particles. Plutonium in the environment. Elsevier, Tokyo

    Google Scholar 

  • Salbu B, Lind OC (2011) Radioactive particles released into the environment from nuclear events. In: Kalmykov SN, Denecke MA (eds) Actinide nanoparticle research. Springer, Berlin, Heidelberg

    Google Scholar 

  • Salbu B, Von Philipborn H, Steinhuser F (1988) Radionuclides associated with colloids and particles in rainwaters, Oslo, Norway. Hot particles from the Chernobyl Fallout. Bergbau-und Industrimuseum, Theuern

    Google Scholar 

  • Salbu B, Bjornstad HE, Svaren I, Prosser SL, Bulman RA, Harvey BR, Lovett MB (1993) Size distribution of radionuclides in nuclear-fuel reprocessing liquids after mixing with Seawater. Sci Total Environ 130:51–63

    Article  Google Scholar 

  • Salbu B, Krekling T, Oughton DH, Ostby G, Kashparov VA, Brand TL, Day JP (1994) Hot particles in accidental releases from Chernobyl and Windscale nuclear installations. Analyst 119:125–130

    Article  CAS  Google Scholar 

  • Salbu B, Nikitin AI, Strand P, Christensen GC, Chumichev VB, Lind B, Fjelldal H, Bergan TDS, Rudjord AL, Sickel M, Valetova NK, Foyn L (1997) Radioactive contamination from dumped nuclear waste in the Kara sea-results from the joint Russian-Norwegian expeditions in 1992–1994. Sci Total Environ 202:185–198

    Article  CAS  Google Scholar 

  • Salbu B, Janssens K, Krekling T, Siminovici A, Drakopoulos M, Raven C, Snigireva I, Snigirev A, Lind OC, Oughton DH, Adams F, Kashparov VA (2000) μ-X-ray absorption tomography and μ-XANES for characterisation of fuel particles. In: Cornuejols D, Admans G (eds) ESRF highlights 1999. European Synchrotron Radiation Facility

    Google Scholar 

  • Salbu B, Krekling T, Lind OC, Oughton DH, Drakopoulos M, Simionovici A, Snigireva I, Snigireva A, Weitkamp T, Adams F, Janssens K, Kashparov V (2001a) High energy X-ray microscopy for characterisation of fuel particles. Nucl Instrum Methods Phys Res A 467:1249–1252

    Article  Google Scholar 

  • Salbu B, Lind OC, Borretzen P, Oughton D, Brechignac F, Howard B (2001b) Advanced speciation techniques for radionuclides associated with colloids and particles. Radioactive pollutants—impact on the environment. EDP Sciences, Les Ulis Cedex A

    Google Scholar 

  • Salbu B, Skipperud L, Germain P, Guesueniat P, Strand P, Lind OC, Christensen G (2003) Radionuclide speciation in effluent from La Hague reprocessing plant in France. Health Phys 85:311–322

    Article  CAS  Google Scholar 

  • Salbu B, Lind OC, Skipperud L (2004) Radionuclide speciation and its relevance in environmental impact assessments. J Environ Radioact 74:233–242

    Article  CAS  Google Scholar 

  • Salbu B, Janssens K, Lind OC, Proost K, Gijsels L, Danesi PR (2005) Oxidation states of uranium in depleted uranium particles from Kuwait. J Environ Radioact 78:125–135

    Article  CAS  Google Scholar 

  • Schneider S, Walther C, Bister S, Schauer V, Christl M, Synal HA, Shozugava K, Steinhauser G (2013) Plutonium release from Fukushima Daiichi fosters the need for more detailed investigations. Sci Rep 3:2988

    Google Scholar 

  • Selchau-Hansen K, Ghose R, Freyer K, Treutler C, Enge W (1999) Hot particles in industrial waste and mining tailings. Radiat Meas 31:451–454

    Article  CAS  Google Scholar 

  • Simon SL, Jenner T, Graham JC, Borchert A (1995) A Comparison of macroscopic and microscopic measurements of plutonium in contaminated soil from the Republic-Of-The-Marshall-Islands. J Radioanalyt Nucl Chem-Art 194:197–205

    Article  CAS  Google Scholar 

  • Sisefsky J (1961) Debris from tests of nuclear weapons—activities roughly proportional to volume are found in particles examined by autoradiography and microscopy. Science 133:735

    Article  CAS  Google Scholar 

  • Skipperud L, Oughton DH (2004) Use of AMS in the marine environment. Environ Int 30:815–825

    Article  CAS  Google Scholar 

  • Skipperud L, Oughton DH, Fifield LK, Lind OC, Tims S, Brown J, Sickel M (2004) Plutonium isotope ratios in the Yenisey and Ob estuaries. Appl Radiat Isot 60:589–593

    Article  CAS  Google Scholar 

  • Smith JN, Ellis KM, Polyak L, Ivanov G, Forman SL, Moran SB (2000) 239,240 Pu transport into the Arctic Ocean from underwater nuclear tests in Chernaya Bay, Novaya Zemlya 61. Continent Shelf Res 20:255–279

    Article  Google Scholar 

  • Solodukhin VP (2005) Nuclear-physical methods in macro- and microanalytical investigations of contamination with radionuclides at Semipalatinsk Nuclear test site. J Radioanalyt Nucl Chem 264:457–462

    Article  CAS  Google Scholar 

  • Sowder AG, Clark SB, Field RA (1999) The transformation of uranyl oxide hydrates: the effect of dehydration on synthetic metaschoepite and its alteration to becquerelite. Environ Sci Technol 33:3552–3557

    Article  CAS  Google Scholar 

  • Sturup S, Dahlgaard H, Nielsen SC (1998) High resolution inductively coupled plasma mass spectrometry for the trace determination of plutonium isotopes and isotope ratios in environmental samples 28. J Anal At Spectrom 13:1321–1326

    Article  CAS  Google Scholar 

  • Sukhrukov FV, Degermendzhi AG, Bolsunovsky A, Belolipetskii VM, Kosolapova LG (2004) Distribution and migration behaviours of radionuclides in the Yenisei River floodplain. SB RAS Publishers, Novosibirsk

    Google Scholar 

  • Tamborini G (2004) SIMS analysis of uranium and actinides in microparticles of different origin. Microchim Acta 145:237–242

    Article  CAS  Google Scholar 

  • Tcherkezian V, Galushkin B, Goryachenkova T, Kashkarov L, Liul A, Roschina I, Rumiantsev O (1995) Forms of contamination of the environment by radionuclides after the tomsk accident (Russia, 1993). J Environ Radioact 27:133–139

    Article  CAS  Google Scholar 

  • UNSCEAR (1993) Sources and effects of ionizing radiation. United Nations, New York

    Google Scholar 

  • UNSCEAR (2000) Sources and effects of ionizing radiation. United Nations, New York

    Google Scholar 

  • Utsunomiya S, Jensen KA, Keeler GJ, Ewing RC (2002) Uraninite and fullerene in atmospheric particulates. Environ Sci Technol 36:4943–4947

    Article  CAS  Google Scholar 

  • Voilleque PG, Killough GG, Rope SK (2002) Methods for estimating radiation doses from short-lived gaseous radionuclides and radioactive particles released to the atmosphere during early Hanford Operations - FINAL REPORT. Centers for Disease Control and Prevention Department of Health and Human Services

    Google Scholar 

  • Wendel CC, Fifield LK, Oughton DH, Lind OC, Skipperud L, Bartniki J, Tims SG, Hoibraten S, Salbu B (2013) Long-range tropospheric transport of uranium and plutonium weapons fallout from Semipalatinsk nuclear test site to Norway. Environ Int 59:92–102

    Article  CAS  Google Scholar 

  • Wolf SF, Bates JK, Buck EC, Dietz NL, Portner JA, Brown NR (1997) Physical and chemical characterization of actinides in soil from Johnston Atoll. Environ Sci Technol 31:467–471

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work is supported by the Research Council of Norway through the CERAD Centre of Excellence funding scheme, project number 223268/F50.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brit Salbu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Salbu, B., Skipperud, L., Lind, O.C. (2015). Sources Contributing to Radionuclides in the Environment: With Focus on Radioactive Particles. In: Walther, C., Gupta, D. (eds) Radionuclides in the Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-22171-7_1

Download citation

Publish with us

Policies and ethics