Skip to main content

Abstract

The domestication of plants, as a bio-cultural process, is a continuous phenomenon intrinsically associated with the use of plants. Traditional and scientific knowledge constitute the basis of the various uses of plants from in situ harvesting to complete domestication of crops. One of the most important challenges of our time is to achieve the conservation and sustainable use of plant genetic resources of landraces, species in the process of domestication and species used in situ. The in situ conservation of agricultural biodiversity is a basic element for the development of more sustainable agroecosystems, the adaptation to climate change, the conservation of ecosystem services and to ensure local food security—a conception that is strongly linked to the local development and the protection of cultural and biological diversity. Through case studies from the Pampa Biome we will discuss the valorization of plant genetic resources through new domestication, the promotion of the use of scientifically developed best management practices for in situ conservation, the widening of the germplasm base for breeding programs, plant breeding for stress tolerance, the development of participatory plant breeding programs and the development of high quality products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadie T, Cordeiro CM, Andrade RV et al (1999) Desenvolvimento da coleção nuclear de germoplasma de milho do Brasil. Avances de investigación en recursos genéticos en el Cono Sur. PROCISUR/IICA, Montevideo, pp 101–107

    Google Scholar 

  • Abbo S, van-Oss Pinhasi R, Gopher A et al (2014) Plant domestication versus crop evolution: a conceptual framework for cereals and grain legumes. Trends Plant Sci 19:351–360

    Article  CAS  PubMed  Google Scholar 

  • Amarante CVT, Santos KL (2011) Goiabeira serrana (Acca sellowiana). Rev Bras Frut 33(1):i–ii

    Google Scholar 

  • Baccino ME (2011) Estructura genética de cuatro poblaciones silvestres de Acca sellowiana (Berg) Burret situadas en el noreste de Uruguay. Tesis Lic. Ciencias Biológicas, Universidad de la República, Uruguay

    Google Scholar 

  • Barbieri RL, Leite DL, Choer E et al (2005) Divergência genética entre populações de cebola com base em marcadores morfológicos. Ciên Rur 35:303–308

    Article  Google Scholar 

  • Barbieri RL, Costa Gomes JC, Alercia A et al (2014) Agricultural biodiversity in Southern Brazil: integrating efforts for conservation and use of neglected and underutilized species. Sustainability 6:741–757

    Article  Google Scholar 

  • Bemhaja M (2001) Gramínea nativa perenne invernal para suelos arenosos: Bromus auleticus cv. INIA Tabobá. In: Rivas M, Oliveira JC (eds) Los recursos fitogenéticos del género Bromus en el Cono Sur, Diálogo 56. PROCISUR/IICA, Montevideo, pp 103–104

    Google Scholar 

  • Benzioni A (2006) Jojoba research as basis for domestication of jojoba in Israel. Israel J Plant Sci 54:157–167

    Article  Google Scholar 

  • Berretta A, Condón F, Rivas M (2007) Segundo informe país sobre el estado de los recursos fitogenéticos – Uruguay. FAO, Rome. http://www.fao.org/docrep/013/i1500e/Uruguay.pdf. Accessed 29 Jan 2015

  • Bettinger R (2012) Early steps in agricultural domestication. In: Gepts P, Bettinger R, Brush S et al (eds) Biodiversity in agriculture: domestication, evolution and sustainability. Cambridge University Press, Cambridge, pp 19–20

    Google Scholar 

  • Blancas J, Casas A, Lira R et al (2009) Traditional management and morphological patterns of Myrtillocactus schenckii in the de Tehuacán Valley, Central México. Econ Bot 63:375–387

    Article  Google Scholar 

  • Bond WJ, Parr CL (2010) Beyond the forest edge: ecology, diversity and conservation of the grassy biomes. Biol Cons 143:2395–2404

    Article  Google Scholar 

  • Bonomo M, Politis G, Gianotti García C (2011) Montículos, jerarquía social y horticultura en las sociedades indígenas del Delta del río Paraná (Argentina). Lat Amer Antiq 22:297–333

    Article  Google Scholar 

  • Borém A, Ramalho MAP, Fritsche-Neto R (2012) Abiotic stresses: challenges for plant breeding in the coming decades. In: Fritsche-Neto R, Borém A (eds) Plant breeding for abiotic stress tolerance. Springer, Berlin, pp 1–12

    Chapter  Google Scholar 

  • Brieger FG, Gurjel JTA, Patterniani E et al (1958) Races of maize in Brazil and other eastern South American countries. Pub 593, National Academies of Science. National Research Council, Washington, DC

    Google Scholar 

  • Burle ML, Abadie T, Alves RBN et al (2002) Análise geográfica da coleção de germoplasma de milho em SIG: distribuição da diversidade e aplicação de descritores ecológicos. In: Resumos expandidos XXIV Congresso Nacional de Milho e Sorgo, Embrapa Milho e Sorgo, Florianópolis, 1–5 Sept 2002

    Google Scholar 

  • Calvete A (2013) Contribución al mejoramiento genético participativo de guayabo del pais Acca sellowiana Berg. (Burret) en el paisaje protegido Quebrada de los Cuervos. Tesis Ing. Agr. Universidad de la República, Uruguay

    Google Scholar 

  • Campos S, del Puerto L, Inda H (2001) Opal phytoliths analysis: its application to the archaeobotanical record in the East of Uruguay. In: Meunier JD, Colin F (eds) Phytoliths: applications in earth sciences and human history. Balkema, Rotterdam, pp 129–142

    Google Scholar 

  • Casas A, Caballero J, Mapes C et al (1997) Manejo de la vegetación, domesticación de plantas y origen de la agricultura em Mesoamerica. Bol Soc Bot Mex 61:31–47

    Google Scholar 

  • Casas A, Otero-Arnaiz A, Pérez-Negrón E, Valiente-Banuet A (2007) In situ management and domestication of plants in Mesoamerica. Ann Bot 100:1101–1115

    Article  PubMed Central  PubMed  Google Scholar 

  • Cavatte PC, Martins SCV, Morais LE et al (2012) The physiology of abiotic stresses. In: Fritsche-Neto R, Borém A (eds) Plant breeding for abiotic stress tolerance. Springer, Berlin, pp 21–51

    Chapter  Google Scholar 

  • Chakraborty S, Newton AC (2011) Climate change, plant diseases and food security: an overview. Plant Pathol 60:2–14

    Article  Google Scholar 

  • Clausen A, Ferrer M, Rosso B (2010) Los recursos fitogenéticos del Cono Sur – regiones ecológicas y principales especies. In: Berretta A (ed) Estrategia en los recursos fitogenéticos para los países del Cono Sur. PROCISUR/IICA, Montevideo, pp 21–40

    Google Scholar 

  • Clement CR (1999) 1492 and the loss of Amazonian crop genetic resources. I. The relation between domestication and human population decline. Econ Bot 53:188–202

    Article  Google Scholar 

  • Clement CR, Lleras E, van Leeuwen J (2005) O potencial das palmeiras tropicais no Brasil: acertos e fracassos nas últimas décadas. Agrocien 9(1–2):67–71

    Google Scholar 

  • Clement CR, Borém A, Lopez MTG (2009) Da domesticação ao melhoramento de plantas. In: Borém A, Lopez MTG, Clement CR (eds) Domesticação e melhoramento: espécies Amazônicas. Universidade Federal de Viçosa, Viçosa, pp 11–38

    Google Scholar 

  • Clement CR, De Cristo-Araújo M, Coppens D’Eeckenbrugge G et al (2010) Origin and domestication of native Amazonian crops. Diversity 2:72–106

    Article  Google Scholar 

  • Clerici MTPS, Carvalho-Silva LB (2011) Nutritional bioactive compounds and technological aspects of minor fruits grown in Brazil. Food Res Inter 44:1658–1670

    Article  CAS  Google Scholar 

  • Condón F, Germán S (2005) Casos de uso de recursos genéticos en programas de mejoramiento de cereales de invierno en Uruguay. Agrocien 9:215–219

    Google Scholar 

  • Darwin C (1859) On the origin of species. John Murray, London

    Google Scholar 

  • del Puerto L, Inda H (2005) Paleoetnobotánica de los constructores de cerritos del noreste de Uruguay: análisis de silicofitolitos de la estructura monticular Yale27 y su entorno. Traball Arqueol Paisaxe 36:109–122

    Google Scholar 

  • del Puerto L, Inda H (2008) Estrategias de subsistencia y dinámica ambiental: análisis de silicofitolitos en sitios arqueológicos de la cuenca de Laguna de Castillos, Rocha, República Oriental del Uruguay. In: Zucol AF, Osterrieth M, Brea M (eds) Fitolitos: estado actual de su conocimiento en América del Sur. Universidad Nacional de Mar del Plata, Mar del Plata, pp 221–236

    Google Scholar 

  • Diamond J (2012) The local origins of domestication. In: Gepts P, Bettinger R, Brush S et al (eds) Biodiversity in agriculture. Domestication, evolution and sustainability. Cambridge University Press, Cambridge, pp 9–17

    Chapter  Google Scholar 

  • Donazzolo J (2012) Conservação pelo uso e domesticação da feijoa na Serra Gaúcha RS. Tese (Doutorado em Ciencias) – Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Florianópolis

    Google Scholar 

  • Ducroquet JPHJ, Hickel ER, Nodari RO (2000) Goiabeira-serrana (Feijoa sellowiana). Série Frutas Nativas 5, FUNEP, Jaboticabal

    Google Scholar 

  • Ellis EC, Kaplan JO, Fuller DQ et al (2013) Used planet: a global history. Proc Nat Acad Sci 110(20):7978–7985

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Evans LT (1996) Crop evolution, adaptation and yield. Cambridge University Press, Cambridge

    Google Scholar 

  • Faber-Langendoen D, Josse C (2010) World grasslands and biodiversity patterns. A report to IUCN ecosystem management programme. Nature Reserve, Arlington

    Google Scholar 

  • FAO (2010) Food and Agriculture Organization of the United Nations. Commission on Genetic Resources for Food and Agriculture. Second report on the state of the world’s plant genetic resources for food and agriculture. FAO, Rome

    Google Scholar 

  • Ferguson AR, Huang H (2007) Genetic resources of kiwifruit: domestication and breeding. Hort Rev 33:1–121

    Article  CAS  Google Scholar 

  • Finatto T, Santos KL, Steiner N et al (2011) Late-acting self-incompatibility in Acca sellowiana (Myrtaceae). Austral J Bot 59(1):53–60

    Article  Google Scholar 

  • Fischer S, Peil R, Neitzke R et al (2012) Landraces of ornamental pumpkins and squashes cultivated in southern Brazil. Acta Hort 937:403–407

    Article  Google Scholar 

  • Forte P, Virili ME, Kuzmanović L et al (2014) A novel assembly of Thinopyrum ponticum genes into the durum wheat genome: pyramiding Fusarium head blight resistance onto recombinant lines previously engineered for other beneficial traits from the same alien species. Mol Breed 34(4):1701–1716

    Article  CAS  Google Scholar 

  • Freitas FO, Bendel G, Allaby RG et al (2003) DNA from primitive maize landraces and archaeological remains: implications for the domestication of maize and its expansion into South America. J Archaeol Sci 30:901–908

    Article  Google Scholar 

  • Fritsche-Neto R, DoVale JC (2012) Breeding for stress-tolerance or resource – use efficiency? In: Fritsche-Neto R, Borém A (eds) Plant breeding for abiotic stress tolerance. Springer, Berlin, pp 13–19

    Chapter  Google Scholar 

  • Galluzzi G, López Noriega I (2014) Conservation and use of genetic resources of underutilized crops in the Americas-a continental analysis. Sustainability 6:980–1017

    Article  Google Scholar 

  • Galván G, González H, Vilaró F (2005) Estado actual de la investigación en poblaciones locales de hortalizas en Uruguay y su utilización en el mejoramiento. Agrocien 9:115–122

    Google Scholar 

  • Garrett KA, Thomas-Sharma S, Forbes GA et al (2014) Climate change and plant pathogen invasions. In: Ziska LH, Dukes JS (eds) Invasive species and global climate change 4. CABI, Oxfordshire, pp 22–44

    Google Scholar 

  • GEM (2003) Germplasm enhancement of maize. http://www.public.iastate.edu/~usda–gem/index.htm. Accessed 29 Jan 2015

  • Gepts P, Bettinger R, Brush S et al (2012) Introduction: the domestication of plants and animals: ten unanswered questions. In: Gepts P, Bettinger R, Brush S et al (eds) Biodiversity in agriculture. Domestication, evolution and sustainability. Cambridge University Press, Cambridge, pp 1–8

    Chapter  Google Scholar 

  • Gutiérrez L, Franco J, Crossa J, Abadie T (2003) Comparing a preliminary racial classification with a numerical classification of the maize landraces of Uruguay. Crop Sci 43:718–727

    Article  Google Scholar 

  • Harlan JR (1975) Crops & man. American Society of Agronomy. Crop Science Society of America, Madison

    Google Scholar 

  • Harris DR (1989) An evolutionary continuum of people-plant interaction. In: Harris DR, Hillman GC (eds) Foraging and farming: the evolution of plant exploitation. Unwin Hyman, London, pp 11–26

    Google Scholar 

  • Harris DR (2012) Evolution of agroecosystems: biodiversity, origins and differential development. In: Gepts P, Bettinger R, Brush S et al (eds) Biodiversity in agriculture. Domestication, evolution and sustainability. Cambridge University Press, Cambridge, pp 21–56

    Chapter  Google Scholar 

  • Heidenreich B (2009) What are global temperate grasslands worth? A case for their protection. A review of current research on their total economic value. Temperate Grassland Conservation Initiative, Vancouver

    Google Scholar 

  • Iriarte J, Holst I, López Mazz JM et al (2001) Subtropical wetland adaptations in Uruguay during the Mid-Holocene: an archaeobotanical perspective. In: Purdy B (ed) Enduring records. The environmental and cultural heritage of wetlands. Oxbow Books, Oxford, pp 61–70

    Google Scholar 

  • Iriarte J, Hols I, Marozzi O et al (2004) Evidence for cultivar adoption and emerging complexity during the mid-Holocene in the La Plata basin. Nature 432:614–617

    Article  CAS  PubMed  Google Scholar 

  • Jarvis A, Upadhyaya H, Gowda C et al (2008) Climate change and its effect on conservation and use of plant genetic resources for food and agriculture and associated biodiversity for food security: thematic background study. FAO, Rome

    Google Scholar 

  • Jaurena M, Lezama F, Cruz P (2012) Perennial grasses traits as functional markers of grazing intensity in basaltic grasslands of Uruguay. Chilean J Agr Res 72(4):541–549

    Article  Google Scholar 

  • LAMP (1997) Latin American maize project. In: Salhuana W, Sevilla R, Eberhart SA (eds). http://www.ars.usda.gov/sp2UserFiles/Place/50301000/Reference_Documents/LAMP-Final-Report-1997.pdf. Accessed 29 Jan 2015

  • Laterra P, Rivas M (2005) Bases y herramientas para la conservación in situ y el manejo integrado de los recursos naturales en los campos y pampas del Cono Sur. Agrocien 9(1–2):169–178

    Google Scholar 

  • Leakey RRB (2012) Participatory domestication of indigenous fruit and nut trees: new crops for sustainable agriculture in developing countries. In: Gepts P, Bettinger R, Brush S et al (eds) Biodiversity in agriculture. Domestication, evolution and sustainability. Cambridge University Press, Cambridge, pp 479–501

    Chapter  Google Scholar 

  • Lezama F, Altesor A, Pereira M et al (2011) Descripción de la heterogeneidad florística en los pastizales naturales de las principales regiones geomorfológicas de Uruguay. In: Altesor A, Ayala W, Paruelo JM (eds) Bases ecológicas y tecnológicas para el manejo de pastizales, vol 26, Serie FPTA-INIA. INIA, Montevideo, pp 15–32

    Google Scholar 

  • Lins Neto EMF, Peroni N, Casas A et al (2014) Brazilian and Mexican experiences in the study of incipient domestication. J Ethnobiol Ethnomed 10:33

    Article  PubMed Central  PubMed  Google Scholar 

  • López Mazz JM (2000) Trabajos en tierra y complejidad cultural en las tierras bajas del Rincón de los Indios. In: Durán A, Bracco R (eds) Arqueología de las tierras bajas. Ministerio de Educación y Cultura /Universidad de la República, Montevideo, pp 271–286

    Google Scholar 

  • López Noriega I, Halewood M, Galluzzi G et al (2013) How policies affect the use of plant genetic resources: the experience of the CGIAR. Resources 2(3):231–269

    Article  Google Scholar 

  • Malosetti M, Abadie T (2001) Sampling strategy to develop a core collection of Uruguayan maize landraces based on morphological traits. Genet Res Crop Evol 48:381–390

    Article  Google Scholar 

  • Mattos JR (1986) A goiabeira serrana. “AP” 19. Instituto de Pesquisas de Recursos Naturais Renováveis, Porto Alegre

    Google Scholar 

  • McGuire PE, Qualset CO (2012) Uses of biodiversity and new and future domestications. In: Gepts P, Bettinger R, Brush S et al (eds) Biodiversity in agriculture. Domestication, evolution and sustainability. Cambridge University Press, Cambridge, pp 475–477

    Google Scholar 

  • McKey DB, Elias M, Pujol B et al (2012) Ecological approaches to crop domestication. In: Gepts P, Bettinger R, Brush S et al (eds) Biodiversity in agriculture. Domestication, evolution and sustainability. Cambridge University Press, Cambridge, pp 479–501

    Google Scholar 

  • Mercer KL, Perales HR (2010) Evolutionary response of landraces to climate change in centers of crop diversity. Evol Appl 3:480–493

    Article  PubMed Central  PubMed  Google Scholar 

  • Meyer RS, Purugganan MD (2013) Evolution of crop species: genetics of domestication and diversification. Nat Rev Genet 14:840–852

    Article  CAS  PubMed  Google Scholar 

  • Millot JC, Methol R, Risso D (1987) Relevamiento de pasturas naturales y mejoramientos extensivos en áreas ganaderas del Uruguay. FUCREA-CHPA, Montevideo

    Google Scholar 

  • Monteverde E, Galván GA, Speranza P (2014) Genetic diversification of local onion populations under different production systems in Uruguay. Plant Genet Res. Charact Util 1:9. doi:http://dx.doi.org/10.1017/S1479262114000963

  • Mundt CC (2014) Durable resistance: a key to sustainable management of pathogens and pests. Infect Genet Evol 27:446–455

    Article  PubMed  Google Scholar 

  • Myers N (1983) A wealth of wild species: storehouse for human welfare. Westview Press, Boulder

    Google Scholar 

  • Neitzke RS, Barbieri RL, Vasconcelos CS et al (2011) Diversity in Capsicum landraces cultivated in Brazil. Acta Hort 918:531–536

    Article  Google Scholar 

  • Nodari RO, Guerra MP, Ducroquet JPHJ (1997) Genetic variability of Feijoa sellowiana germoplasm. Acta Hort 452:41–46

    Article  Google Scholar 

  • Nodari RO, Santos KL, Ducroquet JPHJ et al (2008) Goiabeira-serrana: domesticação. In: Barbieri RL, Stumpf ERT (eds) Origem e evoluçao de plantas cultivadas. Embrapa, Brasilia, pp 407–428

    Google Scholar 

  • Olmos F (1993) Bromus auleticus. Serie técnica 35, INIA, Montevideo

    Google Scholar 

  • Olsen KM, Wendel JF (2013) A bountiful harvest: genomic insights into crop domestication phenotypes. Ann Rev Plant Biol 64:47–70

    Article  CAS  Google Scholar 

  • Overbeck GE, Muller SC, Fidelis A et al (2007) Brazil’s neglected biome: the South Brazilian Campos. Persp Plant Ecol Evol Syst 9:101–116

    Article  Google Scholar 

  • Padulosi S, Thompson J, Rudebjer P (2013) Fighting poverty, hunger and malnutrition with neglected and underutilized species (NUS): needs, challenges and the way forward. Bioversity International, Rome

    Google Scholar 

  • Paruelo JM, Guerschman JP, Piñeiro G et al (2006) Cambios en el uso de la tierra en Argentina y Uruguay: marcos conceptuales para su análisis. Agrocien 10(2):47–61

    Google Scholar 

  • Pastenes C, Santa-Marıa E, Infante R et al (2003) Domestication of the Chilean guava (Ugni molinae Turcz.), a forest understorey shrub, must consider light intensity. Sci Hort 98:71–84

    Article  Google Scholar 

  • Paterniani E, Goodman M (1977) Races of maize in Brazil and adjacent areas. CIMMYT, Mexico

    Google Scholar 

  • Pickersgill B (2007) Domestication of plants in the Americas: insights from Mendelian and molecular genetics. Ann Bot 100:925–940

    Article  PubMed Central  PubMed  Google Scholar 

  • Pinget AD, Ré AE, De Battista JP (2007) Variabilidad genética en cebadilla chaqueña (Bromus auleticus Trin. ex Ness). In: XXXVI Cong Arg de Genética. J Basic Appl Genet 18 (Suppl):S-143–144

    Google Scholar 

  • Piperno DR (2012) New archaeobotanical information on early cultivation and plant domestication involving microplant (phytolith and starch grain) remains. In: Gepts P, Bettinger R, Brush S et al (eds) Biodiversity in agriculture. Domestication, evolution and sustainability. Cambridge University Press, Cambridge, pp 136–159

    Chapter  Google Scholar 

  • Porta B, Antúnez MJ, Olaizola J et al (2013) Identificación y análisis de diversidad de variedades criollas de maíz conservadas in situ-on farm en Tacuarembó. In: IX SIRGEALC (Simposio de Recursos Genéticos para América Latina y El Caribe), CENTA, Acajutla, Nov 2013. http://www.centa.gob.sv/index.php?option=com_content&view=article&id=%20692&Itemid=84. Accessed 29 Jan 2015

  • Porta B, Rivas M, Gutiérrez L, Galván GA (2014) Variability, heritability, and correlations of agronomic traits in an onion landrace and derived S1 lines. Crop Breed Appl Biotech 14:29–35

    Article  Google Scholar 

  • Priori D, Barbieri RL, Castro CM et al (2013) Diversidade genética de Cucurbita pepo, C. argyrosperma e C. ficifolia empregando marcadores microssatélites. Hort Bras 31:361–368

    Article  CAS  Google Scholar 

  • PROCISUR (2005) Desarrollo de colecciones núcleo de maíz en el Cono Sur de América Latina: Argentina, Bolivia, Brasil, Chile, Paraguay y Uruguay. REGENSUR, PROCISUR/IICA, Montevideo

    Google Scholar 

  • Puppo M (2008) Prospección y caracterización de poblaciones silvestres de Acca sellowiana (Guayabo del país). Tesis Ing. Agr. Universidad de la República, Uruguay

    Google Scholar 

  • Puppo M, Rivas M, Franco J et al (2014) Propuesta de descriptores para Acca sellowiana (Berg.) Burret. Rev Brasil Fruit 36(4):957–970

    Article  Google Scholar 

  • Quezada M (2008) Estudio de la diversidad genética de una colección de Acca sellowiana (Berg) Burret con alto potencial agronómico mediante el uso de marcadores moleculares RAPD. Tesis Lic. Universidad de la República, Uruguay

    Google Scholar 

  • Quezada M, Pastina MM, Ravest G et al (2014) A first genetic map of Acca sellowiana based on ISSR, AFLP and SSR markers. Sci Hort 169:138–146

    Article  CAS  Google Scholar 

  • Ré AE, De Battista JP, Costa MC (2006) Variabilidad de caracteres asociados al vigor de plántula en cebadilla chaqueña (Bromus auleticus Trin.). 1. Variabilidad fenotípica, genética, heredabilidad y progreso esperado por selección. In: 26 Congreso Argentino de Producción Animal (RAPA 26) Mar del Plata, 18–20 de October http://www.aapa.org.ar/congresos/2006/PpPdf/PP16.pdf. Accessed 29 Jan 2015

  • Rebuffo M, Condón F, Alzugaray R (2005) Variedades criollas de forrajeras templadas: conservación y uso en mejoramiento genético. Agrocien 9:105–114

    Google Scholar 

  • Rivas M (2001) El cultivar Potrillo de Bromus auleticus. In: Rivas M, Oliveira JC (eds) Los recursos fitogenéticos del género Bromus en el Cono Sur, Diálogo 56. PROCISUR/IICA, Montevideo, pp 105–108

    Google Scholar 

  • Rivas M (2005) Desafiaos y alternatives para la conservacion in situ de los plamares de butia capitita (Mart). Becc Agrocien (Uruguay) 9(1–2):161–168

    Google Scholar 

  • Rivas M (2013) Conservação e uso sustentável de palmares de Butia odorata (Barb. Rodr.) Noblick. PhD dissertation, Universidade Federal de Pelotas, Pelotas

    Google Scholar 

  • Rivas M, Barbieri RL (2014) Boas práticas de manejo para o extrativismo sustentável do butiá. Embrapa, Brasilia

    Google Scholar 

  • Rivas M, Vignale B, Camussi G et al (2007) Los recursos genéticos de Acca sellowiana (Berg.) Burret en Uruguay. Avances de Investigación en Recursos Genéticos del Cono Sur II. PROCISUR/IICA, Montevideo, pp 103–112

    Google Scholar 

  • Rivas M, Clausen A, León-Lobos P (2010) Conservación in situ de recursos fitogenéticos de importancia para la agricultura y la alimentación. In: Berretta A (ed) Estrategia en los Recursos Fitogenéticos para los Países del Cono Sur. PROCISUR/IICA, Montevideo, pp 59–74

    Google Scholar 

  • Rivas M, Barbieri RL, Maia LCD (2012) Plant breeding and in situ utilization of palm trees. Ciênc Rur 42(2):261–269

    Google Scholar 

  • Rivas M, Jaurena M, Gutiérrez L et al (2014) Diversidad vegetal del campo natural de Butia odorata (Barb.Rodr.) Noblick en Uruguay. Agrocien (Uruguay) 18(2):14–27

    Google Scholar 

  • Rosengurtt B (1943) Estudios sobre praderas naturales del Uruguay. Tercera contribución. Barreiro y Ramos, Montevideo

    Google Scholar 

  • Salhuana W, Pollak L (2006) Latin American maize project (LAMP) and germplasm enhancement of maize (GEM) project: generating useful breeding germplasm. Maydica 51:339

    Google Scholar 

  • Sánchez J, Colobig M, Zucol A et al (2013) Primeros resultados sobre el uso prehispánico de los vegetales en el sitio arqueológico Los Tres Cerros 1 (Victoria, Entre Ríos, Argentina): Análisis del registro biosilíceo. Darwin (nueva serie) 1(2):201–219

    Article  Google Scholar 

  • Santos KL (2005) Bases genéticas de características de importancia agronômica em goiabeira-serrana (Acca sellowiana). Tesis Msc. Universidade Federal de Santa Catarina, Florianópolis

    Google Scholar 

  • Santos KL, Lenzi M, Capestrano C et al (2007) Evidencia da atuaçao do sistema de autoincompatibilidade tardia em Acca sellowiana (Berg.) Burret. (Myrtaceae). Rev Brasil Frut 29(1):120–123

    Article  Google Scholar 

  • Santos KL, Santos MO, Laborda PR et al (2008) Isolation and characterization of microsatellite markers in Acca sellowiana (Berg) Burret. Mol Ecol Res 8(5):998–1000

    Article  CAS  Google Scholar 

  • Santos KL, Peroni N, Guries RP et al (2009) Traditional knowledge and management of Feijoa (Acca sellowiana) in Southern Brazil. Econ Bot 63(2):204–214

    Article  Google Scholar 

  • Santos KL, Peroni N, Guries RP et al (2013) Participatory domestication of the fruit tree species feijoa (Acca sellowiana) in Brazil. In: De Boef WS, Subedi A, Peroni N et al (eds) Community biodiversity management. Promoting resilience and the conservation of plant genetic resources. Routledge, New York, pp 240–245

    Google Scholar 

  • Schmitz PI, Beber VM (2000) Aterros no pantanal de Mato Grosso do Sul, Brasil. In: Durán A, Bracco R (eds) Arqueología de las tierras bajas. Ministerio de Educación y Cultura, Montevideo, pp 65–70

    Google Scholar 

  • Sereno MJCM, Wietholter P, Terra F et al (2008) Domesticaçao das plantas. In: Barbieri RL, Stumpf ERT (eds) Origem e evoluçao de plantas cultivadas. Embrapa, Brasilia, pp 39–58

    Google Scholar 

  • Silva P, Calvo-Salazar V, Condón F et al (2015) Effects and interactions of genes Lr34, Lr68 and Sr2 on wheat leaf rust adult plant resistance in Uruguay. Euphytica. doi:10.1007/s10681-014-1343-6

  • SNAP (2013) Sistema nacional de áreas protegidas. Especies prioritarias para la conservación en Uruguay. MVOTMA-SNAP-MEC, Montevideo

    Google Scholar 

  • Soriano A (1991) Río de la Plata grasslands. In: Coupland RT (ed) Natural grasslands. Introduction and western hemisphere. Elsevier, Amsterdam, pp 367–407

    Google Scholar 

  • Stumpf ERT, Barbieri RL, Heiden G (eds) (2009) Cores e formas no Bioma Pampa – plantas ornamentais nativas. Embrapa Clima Temperado, Pelotas

    Google Scholar 

  • Tapia C, Torres E, Parra-Quijano M (2015) Searching for adaptation to abiotic stress: ecogeographical analysis of highland Ecuadorian maize. Crop Sci 55:262–274

    Article  Google Scholar 

  • Thorp G, Bieleski R (2002) Feijoas: origins, cultivation and uses. HortResearch, Auckland

    Google Scholar 

  • UN (United Nations) (1992) Convention on biological diversity. Secretariat of the Convention on Biological Diversity, Montreal

    Google Scholar 

  • Vasconcelos CS, Barbieri RL, Neitzke R et al (2014) Distância genética entre variedades crioulas de Capsicum chinense. Magistra 26:178–185

    Google Scholar 

  • Vaughan D, Balazs E, Heslop-Harrison J (2007) From crop domestication to super-domestication. Ann Bot 100:893–901

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vidal R, Porta B, Alessandri G (2011) Conservación de las variedades locales de maíz Blanco Dentado en Uruguay. IN VIII Simposio Internacional sobre Recursos Genéticos para América Latina y El Caribe, Quito, pp 190–191. http://www.iniap.gob.ec/sitio/images/stories/descargas/sirgealc/SIRGEALC_2011(Resumenes).pdf. Accessed 29 Jan 2015

  • Vignale B, Bisio L (2005) Selección de frutales nativos en Uruguay. Agrocien 9(1–2):35–39

    Google Scholar 

  • Vilaró M (2011) Estudio de la diversidad genética de colecciones de maíz (Zea mays L.) del Cono Sur de América. Masters degree Dissertation Magister en Ciencias Ambientales. Facultad de Ciencias, Universidad de la República, Montevideo. http://ambiente.fcien.edu.uy/tesis/Tesis%20M%20Vilaro%2019-9-11.pdf. Accessed 29 Jan 2015

  • Villela JC, Barbieri RL, Castro CM et al (2014) Caracterização molecular de variedades crioulas de pimentas (Capsicum baccatum) com marcadores microssatélites. Hort Bras 32:131–137

    Article  Google Scholar 

  • Weston RJ (2010) Bioactive products from fruit of the feijoa (Feijoa sellowiana, Myrtaceae): a review. Food Chem 121:923–926

    Article  CAS  Google Scholar 

  • Yang Q, Li Z, Li W et al (2013) CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize. PNAS 110:16969–16974

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zeven A (1972) The partial and complete domestication of the oil palm (Elaeis guineensis). Econ Bot 26:274–279

    Article  Google Scholar 

  • Zhang X, Halder J, White RP et al (2014) Climate change increases risk of Fusarium ear blight on wheat in central China. Ann Appl Biol 164(3):384–395

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mercedes Rivas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rivas, M., Condón, F. (2015). Plant Domestication and Utilization: The Case of the Pampa Biome. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Breeding, Biotechnology and Molecular Tools. Springer, Cham. https://doi.org/10.1007/978-3-319-22521-0_1

Download citation

Publish with us

Policies and ethics