Skip to main content

Checkpoint Blockade for the Treatment of Advanced Melanoma

  • Chapter
  • First Online:
Melanoma

Part of the book series: Cancer Treatment and Research ((CTAR,volume 167))

Abstract

Immunotherapy with immune checkpoint inhibition has been improving the outcomes of patients with many different types of malignancies. Immune checkpoint inhibition has been most extensively studied in patients with advanced melanoma and there are three FDA approved antibodies already widely used in clinical practice (ipilimumab, nivolumab, and pembrolizumab). In this chapter, we review the mechanistic basis behind the development of immune checkpoint blocking antibodies. We then discuss specifics regarding each agent, unique clinical considerations in treating patients with this approach, and future directions, including combination strategies. This chapter is focused on melanoma, but the principles related to this immunotherapy approach are applicable to patients with many types of malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brunet JF, Denizot F, Luciani MF et al (1987) A new member of the immunoglobulin superfamily–CTLA-4. Nature 328(6127):267–270

    Article  CAS  PubMed  Google Scholar 

  2. Krummel MF, Allison JP (1995) CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med 182(2):459–465

    Article  CAS  PubMed  Google Scholar 

  3. Thompson CB, Allison JP (1997) The emerging role of CTLA-4 as an immune attenuator. Immunity 7(4):445–450

    Article  CAS  PubMed  Google Scholar 

  4. Walunas TL, Lenschow DJ, Bakker CY et al (1994) CTLA-4 can function as a negative regulator of T cell activation. Immunity 1(5):405–413

    Article  CAS  PubMed  Google Scholar 

  5. Linsley PS, Brady W, Urnes M, Grosmaire LS, Damle NK, Ledbetter JA (1991) CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med 174(3):561–569

    Article  CAS  PubMed  Google Scholar 

  6. Krummel MF, Allison JP (1996) CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J Exp Med 183(6):2533–2540

    Article  CAS  PubMed  Google Scholar 

  7. Walunas TL, Bakker CY, Bluestone JA (1996) CTLA-4 ligation blocks CD28-dependent T cell activation. J Exp Med 183(6):2541–2550

    Article  CAS  PubMed  Google Scholar 

  8. Brunner MC, Chambers CA, Chan FK, Hanke J, Winoto A, Allison JP (1999) CTLA-4-Mediated inhibition of early events of T cell proliferation. J Immunol 162(10):5813–5820

    CAS  PubMed  Google Scholar 

  9. Greenwald RJ, Boussiotis VA, Lorsbach RB, Abbas AK, Sharpe AH (2001) CTLA-4 regulates induction of anergy in vivo. Immunity 14(2):145–155

    Article  CAS  PubMed  Google Scholar 

  10. Waterhouse P, Penninger JM, Timms E et al (1995) Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270(5238):985–988

    Article  CAS  PubMed  Google Scholar 

  11. Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH (1995) Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3(5):541–547

    Article  CAS  PubMed  Google Scholar 

  12. Chambers CA, Sullivan TJ, Allison JP (1997) Lymphoproliferation in CTLA-4-deficient mice is mediated by costimulation-dependent activation of CD4+ T cells. Immunity 7(6):885–895

    Article  CAS  PubMed  Google Scholar 

  13. Allison JP, Hurwitz AA, Leach DR (1995) Manipulation of costimulatory signals to enhance antitumor T-cell responses. Curr Opin Immunol 7(5):682–686

    Article  CAS  PubMed  Google Scholar 

  14. Leach DR, Krummel MF, Allison JP (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science 271(5256):1734–1736

    Article  CAS  PubMed  Google Scholar 

  15. Kwon ED, Hurwitz AA, Foster BA et al (1997) Manipulation of T cell costimulatory and inhibitory signals for immunotherapy of prostate cancer. Proc Natl Acad Sci USA 94(15):8099–8103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Yang YF, Zou JP, Mu J et al (1997) Enhanced induction of antitumor T-cell responses by cytotoxic T lymphocyte-associated molecule-4 blockade: the effect is manifested only at the restricted tumor-bearing stages. Cancer Res 57(18):4036–4041

    CAS  PubMed  Google Scholar 

  17. Shrikant P, Khoruts A, Mescher MF (1999) CTLA-4 blockade reverses CD8+ T cell tolerance to tumor by a CD4+ T cell- and IL-2-dependent mechanism. Immunity 11(4):483–493

    Article  CAS  PubMed  Google Scholar 

  18. Sotomayor EM, Borrello I, Tubb E, Allison JP, Levitsky HI (1999) In vivo blockade of CTLA-4 enhances the priming of responsive T cells but fails to prevent the induction of tumor antigen-specific tolerance. Proc Natl Acad Sci USA 96(20):11476–11481

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Selby MJ, Engelhardt JJ, Quigley M et al (2013) Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer immunology research 1(1):32–42

    Article  CAS  PubMed  Google Scholar 

  20. Simpson TR, Li F, Montalvo-Ortiz W et al (2013) Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J Exp Med 210(9):1695–1710

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Peggs KS, Quezada SA, Chambers CA, Korman AJ, Allison JP (2009) Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J Exp Med 206(8):1717–1725

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Kwon ED, Foster BA, Hurwitz AA et al (1999) Elimination of residual metastatic prostate cancer after surgery and adjunctive cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) blockade immunotherapy. Proc Natl Acad Sci USA 96(26):15074–15079

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Dewan MZ, Galloway AE, Kawashima N et al (2009) Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res 15(17):5379–5388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Demaria S, Kawashima N, Yang AM et al (2005) Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin Cancer Res 11(2 Pt 1):728–734

    CAS  PubMed  Google Scholar 

  25. Mokyr MB, Kalinichenko T, Gorelik L, Bluestone JA (1998) Realization of the therapeutic potential of CTLA-4 blockade in low-dose chemotherapy-treated tumor-bearing mice. Cancer Res 58(23):5301–5304

    CAS  PubMed  Google Scholar 

  26. den Brok MH, Sutmuller RP, Nierkens S et al (2006) Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity. Br J Cancer 95(7):896–905

    Article  Google Scholar 

  27. Gregor PD, Wolchok JD, Ferrone CR et al (2004) CTLA-4 blockade in combination with xenogeneic DNA vaccines enhances T-cell responses, tumor immunity and autoimmunity to self antigens in animal and cellular model systems. Vaccine 22(13–14):1700–1708

    Article  CAS  PubMed  Google Scholar 

  28. Hurwitz AA, Yu TF, Leach DR, Allison JP (1998) CTLA-4 blockade synergizes with tumor-derived granulocyte-macrophage colony-stimulating factor for treatment of an experimental mammary carcinoma. Proc Natl Acad Sci USA 95(17):10067–10071

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. van Elsas A, Hurwitz AA, Allison JP (1999) Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med 190(3):355–366

    Article  PubMed Central  PubMed  Google Scholar 

  30. van Elsas A, Sutmuller RP, Hurwitz AA et al (2001) Elucidating the autoimmune and antitumor effector mechanisms of a treatment based on cytotoxic T lymphocyte antigen-4 blockade in combination with a B16 melanoma vaccine: comparison of prophylaxis and therapy. J Exp Med 194(4):481–489

    Article  PubMed Central  PubMed  Google Scholar 

  31. Hurwitz AA, Foster BA, Kwon ED et al (2000) Combination immunotherapy of primary prostate cancer in a transgenic mouse model using CTLA-4 blockade. Cancer Res 60(9):2444–2448

    CAS  PubMed  Google Scholar 

  32. Mangsbo SM, Sandin LC, Anger K, Korman AJ, Loskog A, Totterman TH (2010) Enhanced tumor eradication by combining CTLA-4 or PD-1 blockade with CpG therapy. J Immunother 33(3):225–235

    Article  CAS  PubMed  Google Scholar 

  33. Curran MA, Allison JP (2009) Tumor vaccines expressing flt3 ligand synergize with ctla-4 blockade to reject preimplanted tumors. Cancer Res 69(19):7747–7755

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Met O, Wang M, Pedersen AE, Nissen MH, Buus S, Claesson MH (2006) The effect of a therapeutic dendritic cell-based cancer vaccination depends on the blockage of CTLA-4 signaling. Cancer Lett 231(2):247–256

    Article  CAS  PubMed  Google Scholar 

  35. Daftarian P, Song GY, Ali S et al (2004) Two distinct pathways of immuno-modulation improve potency of p53 immunization in rejecting established tumors. Cancer Res 64(15):5407–5414

    Article  CAS  PubMed  Google Scholar 

  36. Davila E, Kennedy R, Celis E (2003) Generation of antitumor immunity by cytotoxic T lymphocyte epitope peptide vaccination, CpG-oligodeoxynucleotide adjuvant, and CTLA-4 blockade. Cancer Res 63(12):3281–3288

    CAS  PubMed  Google Scholar 

  37. Gao Y, Whitaker-Dowling P, Griffin JA, Barmada MA, Bergman I (2009) Recombinant vesicular stomatitis virus targeted to Her2/neu combined with anti-CTLA4 antibody eliminates implanted mammary tumors. Cancer Gene Ther 16(1):44–52

    Article  CAS  PubMed  Google Scholar 

  38. Tchekmedyian S et al (2002) MDX-010 (human anti-CTLA4): a phase I trial in malignant melanoma. Proc Am Soc Clin Oncol 21(abstr 56)

    Google Scholar 

  39. Wolchok JD, Neyns B, Linette G et al (2010) Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study. Lancet Oncol 11(2):155–164

    Article  CAS  PubMed  Google Scholar 

  40. Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Robert C, Thomas L, Bondarenko I et al (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364(26):2517–2526

    Article  CAS  PubMed  Google Scholar 

  42. Wolchok JD, Hoos A, O’Day S et al (2009) Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res 15(23):7412–7420

    Article  CAS  PubMed  Google Scholar 

  43. Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Weber J (2009) Ipilimumab: controversies in its development, utility and autoimmune adverse events. Cancer Immunol Immunother 58(5):823–830

    Article  CAS  PubMed  Google Scholar 

  45. Di Giacomo AM, Biagioli M, Maio M (2010) The emerging toxicity profiles of anti-CTLA-4 antibodies across clinical indications. Semin Oncol 37(5):499–507

    Article  PubMed  Google Scholar 

  46. Forde PM, Rock K, Wilson G, O’Byrne KJ (2012) Ipilimumab-induced Immune-related renal failure—A case report. Anticancer Res 32(10):4607–4608

    PubMed  Google Scholar 

  47. Maur M, Tomasello C, Frassoldati A, Dieci MV, Barbieri E, Conte P (2012) Posterior reversible encephalopathy syndrome during ipilimumab therapy for malignant melanoma. J Clin Oncol 30(6):e76–e78

    Article  CAS  PubMed  Google Scholar 

  48. Andrews S, Holden R (2012) Characteristics and management of immunerelated adverse effects associated with ipilimumab, a new immunotherapy for metastatic melanoma. Cancer Manage Res 4:299–307

    Article  CAS  Google Scholar 

  49. Beck KE, Blansfield JA, Tran KQ et al (2006) Enterocolitis in patients with cancer after antibody blockade of cytotoxic T-lymphocyte-associated antigen 4. J Clin Oncol 24(15):2283–2289

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Wolchok J (2012) How recent advances in immunotherapy are changing the standard of care for patients with metastatic melanoma. Ann Oncol 23(Suppl 8): viii15–21

    Google Scholar 

  51. Juszczak A, Gupta A, Karavitaki N, Middleton MR, Grossman AB (2012) Ipilimumab: a novel immunomodulating therapy causing autoimmune hypophysitis: a case report and review. Eur J Endocrinol Eur Fed Endocrine Soc 167(1):1–5

    Article  CAS  Google Scholar 

  52. Dillard T, Yedinak CG, Alumkal J, Fleseriu M (2010) Anti-CTLA-4 antibody therapy associated autoimmune hypophysitis: serious immune related adverse events across a spectrum of cancer subtypes. Pituitary 13(1):29–38

    Article  CAS  PubMed  Google Scholar 

  53. Kaehler KC, Egberts F, Lorigan P, Hauschild A (2009) Anti-CTLA-4 therapy-related autoimmune hypophysitis in a melanoma patient. Melanoma Res 19(5):333–334

    Article  CAS  PubMed  Google Scholar 

  54. https://www.hcp.yervoy.com/pages/rems.aspx

  55. Kyi C, Carvajal RD, Wolchok JD, Postow MA (2014) Ipilimumab in patients with melanoma and autoimmune disease. J Immunother Cancer 2(1):35

    Article  PubMed Central  PubMed  Google Scholar 

  56. Gettings EJ, Hackett CT, Scott TF (2014) Severe relapse in a multiple sclerosis patient associated with ipilimumab treatment of melanoma. Multiple Sclerosis

    Google Scholar 

  57. Berman D et al (2009) Association of peripheral blood absolute lymphocyte count (ALC) and clinical activity in patients (pts) with advanced melanoma treated with ipilimumab [abstract]. J Clin Oncol 27:3020

    Article  Google Scholar 

  58. Ku GY, Yuan J, Page DB et al (2010) Single-institution experience with ipilimumab in advanced melanoma patients in the compassionate use setting: lymphocyte count after 2 doses correlates with survival. Cancer 116(7):1767–1775

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Yuan J, Gnjatic S, Li H et al (2008) CTLA-4 blockade enhances polyfunctional NY-ESO-1 specific T cell responses in metastatic melanoma patients with clinical benefit. Proc Natl Acad Sci USA 105(51):20410–20415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Yuan J, Adamow M, Ginsberg BA et al (2011) Integrated NY-ESO-1 antibody and CD8+ T-cell responses correlate with clinical benefit in advanced melanoma patients treated with ipilimumab. Proc Natl Acad Sci USA 108:16723–16728

    Google Scholar 

  61. Burmeister Y, Lischke T, Dahler AC et al (2008) ICOS controls the pool size of effector-memory and regulatory T cells. J Immunol 180(2):774–782

    Article  CAS  PubMed  Google Scholar 

  62. Liakou CI, Kamat A, Tang DN et al (2008) CTLA-4 blockade increases IFNgamma-producing CD4+ ICOShi cells to shift the ratio of effector to regulatory T cells in cancer patients. Proc Natl Acad Sci USA 105(39):14987–14992

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Carthon BC, Wolchok JD, Yuan J et al (2010) Preoperative CTLA-4 blockade: tolerability and immune monitoring in the setting of a presurgical clinical trial. Clin Cancer Res 16(10):2861–2871

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Hamid O, Schmidt H, Nissan A et al (2011) A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma. J Transl Med 9:204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Ji RR, Chasalow SD, Wang L et al (2012) An immune-active tumor microenvironment favors clinical response to ipilimumab. Cancer Immunol Immunother 61(7):1019–1031

    Article  CAS  PubMed  Google Scholar 

  66. Snyder A, Makarov V, Merghoub T et al (2014) Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 371(23):2189–2199

    Article  PubMed Central  PubMed  Google Scholar 

  67. Ishida Y, Agata Y, Shibahara K, Honjo T (1992) Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 11(11):3887–3895

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Freeman GJ, Long AJ, Iwai Y et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192(7):1027–1034

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Keir ME, Liang SC, Guleria I et al (2006) Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med 203(4):883–895

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Francisco LM, Salinas VH, Brown KE et al (2009) PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med 206(13):3015–3029

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Nishimura H, Nose M, Hiai H, Minato N, Honjo T (1999) Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11(2):141–151

    Article  CAS  PubMed  Google Scholar 

  72. Nishimura H, Okazaki T, Tanaka Y et al (2001) Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291(5502):319–322

    Article  CAS  PubMed  Google Scholar 

  73. Dong H, Strome SE, Salomao DR et al (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nature Med 8(8):793–800

    CAS  PubMed  Google Scholar 

  74. Fanoni D, Tavecchio S, Recalcati S et al (2011) New monoclonal antibodies against B-cell antigens: possible new strategies for diagnosis of primary cutaneous B-cell lymphomas. Immunol Lett 134(2):157–160

    Article  CAS  PubMed  Google Scholar 

  75. Jeffrey R, Infante JDP, Burris HA et al (2013) Clinical and pharmacodynamic (PD) results of a phase I trial with AMP-224 (B7-DC Fc) that binds to the PD-1 receptor. J Clin Oncol 31 (suppl; abstr 3044)

    Google Scholar 

  76. Topalian SL, Hodi FS, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Hamid O, Robert C, Daud A et al (2013) Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med 369(2):134–144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Topalian SL, Sznol M, McDermott DF et al (2014) Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol Official J Am Soc Clin Oncol 32(10):1020–1030

    Article  CAS  Google Scholar 

  79. Robert C, Long GV, Brady B et al (2014) Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372:320–330

    Google Scholar 

  80. Robert C, Ribas A, Wolchok JD et al (2014) Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet

    Google Scholar 

  81. Atkins MB, Kudchadkar R, Sznol M et al (2014) Phase 2, multicenter, safety and efficacy study of pidilizumab in patients with metastatic melanoma. J Clin Oncol 32(5 s) (suppl; abstr 9001)

    Google Scholar 

  82. Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ (2007) Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity 27(1):111–122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Brahmer JR, Tykodi SS, Chow LQ et al (2012) Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 366(26):2455–2465

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Powles T, Vogelzang NJ, Fine GD et al (2014) Inhibition of PD-L1 by MPDL3280A and clinical activity in pts with metastatic urothelial bladder cancer (UBC). J Clin Oncol 32(5 s) (suppl; abstr 5011)

    Google Scholar 

  85. Segal NH, Anto SJ, Brahmer JR et al (2014) Preliminary data from a multi-arm expansion study of MEDI4736, an anti-PD-L1 antibody. J Clin Oncol 32(5 s) (suppl; abstr 3002)

    Google Scholar 

  86. Herbst RS, Gordon MS, Fine GD et al (2013) A study of MPDL3280A, an engineered PD-L1 antibody in patients with locally advanced or metastatic tumors. J Clin Oncol 31 (suppl; abstr 3000)

    Google Scholar 

  87. Heery CR, O’Sullivan Coyne GH, Madan RA et al (2014) Phase I open-label, multiple ascending dose trial of MSB0010718C, an anti-PD-L1 monoclonal antibody, in advanced solid malignancies. J Clin Oncol 32(5 s) (suppl; abstr 3064)

    Google Scholar 

  88. Saenger YM, Wolchok JD (2008) The heterogeneity of the kinetics of response to ipilimumab in metastatic melanoma: patient cases. Cancer Immun 8:1

    PubMed Central  PubMed  Google Scholar 

  89. Wolchok JD, Hoos A, O’Day S et al (2009) Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res Official J Am Assoc Cancer Res 15(23):7412–7420

    Article  CAS  Google Scholar 

  90. Hoos A, Eggermont AM, Janetzki S et al (2010) Improved endpoints for cancer immunotherapy trials. J Natl Cancer Inst 102(18):1388–1397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Hodi FS, Ribas, A., Daud A et al (2014) Evaluation of immune-related response criteria (irRC) in patients (pts) with advanced melanoma (MEL) treated with the anti-PD-1 monoclonal antibody MK-3475. J Clin Oncol 32(5 s) (suppl; abstr 3006)

    Google Scholar 

  92. Weber J, Minor D, D’Angelo S et al (2014) A phase 3 randomized, open-label study of nivolumab (anti-PD-1; BMS-936558; ONO-4538) versus investigator’s choice chemotherapy (ICC) in patients with advanced melanoma after prior anti-CTLA-4 therapy. Eur Soc Med Oncol

    Google Scholar 

  93. Nishino M, Giobbie-Hurder A, Gargano M, Suda M, Ramaiya NH, Hodi FS (2013) Developing a common language for tumor response to immunotherapy: immune-related response criteria using unidimensional measurements. Clin Cancer Res Official J Am Assoc Cancer Res 19(14):3936–3943

    Article  CAS  Google Scholar 

  94. Weber JS, Kudchadkar RR, Yu B et al (2013) Safety, efficacy, and biomarkers of nivolumab with vaccine in ipilimumab-refractory or -naive melanoma. J Clin Oncol 31(34):4311–4318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Grosso J HC, Inzunza D et al (2013) Association of tumor PD-L1 expression and immune biomarkers with clinical activity in patients (pts) with advanced solid tumors treated with nivolumab (anti-PD-1; BMS-936558; ONO-4538). J Clin Oncol 31 (suppl; abstr 3016)

    Google Scholar 

  96. Taube JM, Klein A, Brahmer JR et al (2014) Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res Official J Am Assoc Cancer Res 20:5064–5074

    Google Scholar 

  97. Atefi M, Avramis E, Lassen A et al (2014) Effects of MAPK and PI3 K pathways on PD-L1 expression in melanoma. Clin Cancer Res Official J Am Assoc Cancer Res 20(13):3446–3457

    Article  CAS  Google Scholar 

  98. Parsa AT, Waldron JS, Panner A et al (2007) Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nature Med 13(1):84–88

    Article  CAS  PubMed  Google Scholar 

  99. Wolchok JD, Kluger H, Callahan MK et al (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369(2):122–133

    Article  CAS  PubMed  Google Scholar 

  100. Sznol M, Kluger H, Hodi F, David F. McDermott RDC, Lawrence DP, Topalian SL, Atkins MB, Powderly JD, Sharfman WH, Puzanov I, Smith DC, Wigginton JM, Kollia G, Gupta AK, Sosman JA (2013) Survival and long-term follow-up of safety and response in patients (pts) with advanced melanoma (MEL) in a phase I trial of nivolumab (anti-PD-1; BMS-936558; ONO-4538). J Clin Oncol 31 (suppl; abstr CRA9006) (ASCO Annual Meeting 2013)

    Google Scholar 

  101. Hodi FS, Lee S, McDermott DF et al (2014) Ipilimumab plus sargramostim vs ipilimumab alone for treatment of metastatic melanoma: a randomized clinical trial. JAMA 312(17):1744–1753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Ribas A, Hodi FS, Callahan M, Konto C, Wolchok J (2013) Hepatotoxicity with combination of vemurafenib and ipilimumab. N Engl J Med 368(14):1365–1366

    Article  CAS  PubMed  Google Scholar 

  103. Puzanov I, Callahan M, Linette G, Patel S, Luke JJ, Sosman JA, Jedd DW, Omid H, Minor DR, Orford KW, Hug BA, Ma B, Matthys GM, Hoos A (2014) Phase 1 study of the BRAF inhibitor dabrafenib (D) with or without the MEK inhibitor trametinib (T) in combination with ipilimumab (Ipi) for V600E/K mutation–positive unresectable or metastatic melanoma (MM). ASCO J Clin Oncol 32(5 s) (suppl; abstr 2511)

    Google Scholar 

  104. Formenti SC, Demaria S (2013) Combining radiotherapy and cancer immunotherapy: a paradigm shift. J Natl Cancer Inst 105(4):256–265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Deng L, Liang H, Burnette B et al (2014) Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest 124(2):687–695

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Belcaid Z, Phallen JA, Zeng J et al (2014) Focal radiation therapy combined with 4-1BB activation and CTLA-4 blockade yields long-term survival and a protective antigen-specific memory response in a murine glioma model. PLoS ONE 9(7):e101764

    Article  PubMed Central  PubMed  Google Scholar 

  107. Postow MA, Callahan MK, Barker CA et al (2012) Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med 366(10):925–931

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Sullivan RJ, Lawrence DP, Wargo JA, Oh KS, Gonzalez RG, Piris A (2013) Case records of the Massachusetts general hospital. Case 21-2013. A 68-year-old man with metastatic melanoma. N Engl J Med 369(2):173–183

    Article  CAS  PubMed  Google Scholar 

  109. Grimaldi AM, Simeone E, Giannarelli D et al (2014) Abscopal effects of radiotherapy on advanced melanoma patients who progressed after ipilimumab immunotherapy. Oncoimmunology 3:e28780

    Article  PubMed Central  PubMed  Google Scholar 

  110. Barker CA, Postow MA, Khan SA et al (2013) Concurrent radiotherapy and ipilimumab immunotherapy for patients with melanoma. Cancer Immunol Res 1(2):92–98

    Article  CAS  PubMed  Google Scholar 

  111. Seung SK, Curti BD, Crittenden M et al (2012) Phase 1 study of stereotactic body radiotherapy and interleukin-2—tumor and immunological responses. Sci Trans Med 4(137):137ra74

    Google Scholar 

  112. Larkin et al (2015) Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373(1):23–24

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Postow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Callahan, M.K., Flaherty, C.R., Postow, M.A. (2016). Checkpoint Blockade for the Treatment of Advanced Melanoma. In: Kaufman, H., Mehnert, J. (eds) Melanoma. Cancer Treatment and Research, vol 167. Springer, Cham. https://doi.org/10.1007/978-3-319-22539-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22539-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22538-8

  • Online ISBN: 978-3-319-22539-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics