Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 913))

  • 1099 Accesses

Abstract

As we saw in Chap. 2Goldstone Boson Higgs, a fundamental ingredient of the composite Higgs scenarios is the partial compositeness hypothesis, which provides a general framework to describe the Standard Model (SM) fermions and to generate their masses and couplings. In most of the previous discussions we focused our attention on the third-generations quarks, and in particular on the top. In fact, due to its large mass, the top is usually the elementary state with the largest mixing with the composite sector and is the one that almost completely determines the dynamics of Electro-Weak Symmetry Breaking (EWSB).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the UV, where the composite sector is close to the fixed point, the operators are characterized by their different scaling dimensions \(d_{u_{R}}^{\,j}\), which can be regarded as their eigenvalue under dilatation. The presence of this additional quantum number makes them distinguishable and does not allow to rotate them.

  2. 2.

    The SU(3) c color group is automatically respected, since all the operators are color triplets in order to mix with the elementary quarks.

  3. 3.

    For shortness we will not make an explicit distinction between the couplings to the Higgs field responsible to generate the mass matrices and the linear couplings of the Higgs fluctuations to the quarks. Obviously, due to the non-linear Higgs dynamics, the two things are in general different and only coincide at leading order in the vf expansion. In the following we will denote both couplings by “Yukawa’s” and leave the exact interpretation of the concept to the context.

  4. 4.

    Below we report the structure of the Yukawa matrices at leading-order in the \(\lambda /g_{{\ast}}\) expansion. Subleading effects from of order \(\lambda ^{2}\) modifications of the kinetic terms induced by the composite sector will be discussed in Sect. 4.1.2.

  5. 5.

    This is true in the absence of additional symmetries in the composite sector. For instance by imposing a P LR symmetry the number of invariants can be reduced to two and Higgs-mediated FCNC’s can be avoided.

  6. 6.

    The field redefinition can be numerically relevant for the top quark given its sizable degree of compositeness. It is instead typically negligible for all the other quarks.

  7. 7.

    The additional factor \(\lambda ^{2}\) comes from the quark mass factor that comes from the equations of motion.

  8. 8.

    In order to properly match the coefficients of the effective operators with the general estimates of partial compositeness, all the quantities must be evaluated at the m scale. To keep our discussion as simple as possible we avoid to explicitly include the running effects in our equations. We however include them in the numerical results (for this we assume \(m_{{\ast}}\sim 1\,\mathrm{TeV}\)). We refer the interested reader to the original literature [1417].

  9. 9.

    See Sect. 2.2.2The Minimal Composite Higgs Model for a first description of the custodial group and section “The Custodial Symmetries” in Appendix in Chap. 7EW Precision Tests for a complete discussion.

  10. 10.

    See Eq. (7.24) for the exact definition of the bottom couplings.

  11. 11.

    In the cases we consider the \(\tilde{\mathcal{Q}}_{1}\) operator is generated with a smaller coefficient than \(\mathcal{Q}_{1}\), while the bounds on the two operators are comparable. The \(\mathcal{Q}_{2}\) and \(\mathcal{Q}_{3}\) operators are expected to have similar size, but the bounds on the former are always tighter. The same happens for \(\mathcal{Q}_{4}\) and \(\mathcal{Q}_{5}\) [27].

  12. 12.

    For instance, the experimental bounds on the \(\Delta F = 2\) transitions in the Kaon system require a suppression scale \(\Lambda \gtrsim 10^{5}\,\mathrm{TeV}\). The RS-GIM mechanism lowers this scale by four orders of magnitude (see Table 4.2).

  13. 13.

    The first proposals of flavor symmetric composite Higgs scenarios were developed in the extra-dimensional framework in [4044].

  14. 14.

    This scenario can be easily realized also in the models with a single left-handed mixing with the choice \(\lambda _{q_{L}}^{{\prime}} =\lambda _{q_{L}} \propto\mathbb{1}\).

  15. 15.

    Mixed scenarios considering a reduced U(2) flavor symmetry only for one quark chirality and full U(3) symmetry for the others can also be constructed [46].

References

  1. K. Agashe, G. Perez, A. Soni, Flavor structure of warped extra dimension models. Phys. Rev. D71, 016002 (2005). arXiv:hep-ph/0408134 [hep-ph]

  2. T. Gherghetta, A. Pomarol, Bulk fields and supersymmetry in a slice of AdS. Nucl. Phys. B586, 141–162 (2000). arXiv:hep-ph/0003129 [hep-ph]

    Google Scholar 

  3. Y. Grossman, M. Neubert, Neutrino masses and mixings in nonfactorizable geometry. Phys. Lett. B474, 361–371 (2000). arXiv:hep-ph/9912408 [hep-ph]

    Google Scholar 

  4. S.J. Huber, Flavor violation and warped geometry. Nucl. Phys. B666, 269–288 (2003). arXiv:hep-ph/0303183 [hep-ph]

    Google Scholar 

  5. S.J. Huber, Q. Shafi, Fermion masses, mixings and proton decay in a Randall-Sundrum model. Phys. Lett. B498, 256–262 (2001) arXiv:hep-ph/0010195 [hep-ph]

    Google Scholar 

  6. D.B. Kaplan, Flavor at SSC energies: a new mechanism for dynamically generated fermion masses. Nucl. Phys. B365, 259–278 (1991)

    Article  ADS  Google Scholar 

  7. C. Csaki, A. Falkowski, A. Weiler, A simple flavor protection for RS. Phys. Rev. D80, 016001 (2009). arXiv:0806.3757 [hep-ph]

  8. R. Barbieri, D. Buttazzo, F. Sala, D.M. Straub, A. Tesi, A 125 GeV composite Higgs boson versus flavour and electroweak precision tests. JHEP 1305, 069 (2013). arXiv:1211.5085 [hep-ph]

  9. K. Agashe, R. Contino, Composite Higgs-mediated FCNC. Phys. Rev. D80, 075016 (2009). arXiv:0906.1542 [hep-ph]

  10. G. D’Ambrosio, G. Giudice, G. Isidori, A. Strumia, Minimal flavor violation: an effective field theory approach. Nucl. Phys. B645, 155–187 (2002). arXiv:hep-ph/0207036 [hep-ph]

    Google Scholar 

  11. W. Altmannshofer, P. Paradisi, D.M. Straub, Model-independent constraints on new physics in b → s transitions. JHEP 1204, 008 (2012). arXiv:1111.1257 [hep-ph]

  12. A.J. Buras, Weak Hamiltonian, CP violation and rare decays (1998). arXiv:hep-ph/9806471 [hep-ph]

  13. W. Altmannshofer, D.M. Straub, Cornering new physics in b → s transitions. JHEP 1208, 121 (2012). arXiv:1206.0273 [hep-ph]

  14. K. Agashe, A. Azatov, L. Zhu, Flavor violation tests of warped/composite SM in the two-site approach. Phys. Rev. D79, 056006 (2009). arXiv:0810.1016 [hep-ph]

  15. O. Gedalia, G. Isidori, G. Perez, Combining direct & indirect kaon CP violation to constrain the warped KK scale. Phys. Lett. B682, 200–206 (2009). arXiv:0905.3264 [hep-ph]

  16. B. Keren-Zur, P. Lodone, M. Nardecchia, D. Pappadopulo, R. Rattazzi et al., On partial compositeness and the CP asymmetry in charm decays. Nucl. Phys. B867, 394–428 (2013). arXiv:1205.5803 [hep-ph]

    Google Scholar 

  17. N. Vignaroli, \(\Delta F = 1\) constraints on composite Higgs models with LR parity. Phys. Rev. D86, 115011 (2012). arXiv:1204.0478 [hep-ph]

  18. M. König, M. Neubert, D.M. Straub, Dipole operator constraints on composite Higgs models. Eur. Phys. J. C74(7), 2945 (2014). arXiv:1403.2756 [hep-ph]

  19. G. Isidori, J.F. Kamenik, Z. Ligeti, G. Perez, Implications of the LHCb evidence for charm CP violation. Phys. Lett. B711, 46–51 (2012). arXiv:1111.4987 [hep-ph]

    Google Scholar 

  20. K. Agashe, R. Contino, L. Da Rold, A. Pomarol, A custodial symmetry for Zb anti-b. Phys. Lett. B641, 62–66 (2006). arXiv:hep-ph/0605341 [hep-ph]

  21. A.J. Buras, C. Grojean, S. Pokorski, R. Ziegler, FCNC effects in a minimal theory of fermion masses. JHEP 1108, 028 (2011). arXiv:1105.3725 [hep-ph]

  22. M. Bauer, S. Casagrande, U. Haisch, M. Neubert, Flavor physics in the Randall-Sundrum model: II. Tree-level weak-interaction processes. JHEP 1009, 017 (2010). arXiv:0912.1625 [hep-ph]

  23. G. Altarelli, R. Barbieri, F. Caravaglios, Nonstandard analysis of electroweak precision data. Nucl. Phys. B405, 3–23 (1993)

    ADS  Google Scholar 

  24. G. Cacciapaglia, C. Csaki, G. Marandella, A. Strumia, The minimal set of electroweak precision parameters. Phys. Rev. D74, 033011 (2006). arXiv:hep-ph/0604111 [hep-ph]

  25. C. Csaki, A. Falkowski, A. Weiler, The flavor of the composite pseudo-Goldstone Higgs. JHEP 0809, 008 (2008). arXiv:0804.1954 [hep-ph]

    Google Scholar 

  26. G. Isidori, Flavor physics and CP violation (2013). arXiv:1302.0661 [hep-ph]

  27. UTfit Collaboration, M. Bona et al., Model-independent constraints on \(\Delta F = 2\) operators and the scale of new physics. JHEP 0803, 049 (2008). arXiv:0707.0636 [hep-ph]

  28. M. Pospelov, A. Ritz, Neutron EDM from electric and chromoelectric dipole moments of quarks. Phys. Rev. D63, 073015 (2001). arXiv:hep-ph/0010037 [hep-ph]

  29. Particle Data Group Collaboration, K. Olive et al., Review of particle physics. Chin. Phys. C38, 090001 (2014)

  30. E. Braaten, C.-S. Li, T.-C. Yuan, The evolution of Weinberg’s gluonic CP violation operator. Phys. Rev. Lett. 64, 1709 (1990)

    Article  ADS  Google Scholar 

  31. D. Chang, W.-Y. Keung, C. Li, T. Yuan, QCD corrections to CP violation from color electric dipole moment of b quark. Phys. Lett. B241, 589 (1990)

    Article  ADS  Google Scholar 

  32. J.F. Kamenik, M. Papucci, A. Weiler, Constraining the dipole moments of the top quark. Phys. Rev. D85(3), 071501 (2012). arXiv:1107.3143 [hep-ph]

  33. F. Sala, A bound on the charm chromo-EDM and its implications. JHEP 1403, 061 (2014). arXiv:1312.2589 [hep-ph]

  34. O. Matsedonskyi, G. Panico, A. Wulzer, Light top partners for a light composite Higgs. JHEP 1301, 164 (2013). arXiv:1204.6333 [hep-ph]

  35. G. Panico, M. Redi, A. Tesi, A. Wulzer, On the tuning and the mass of the composite Higgs. JHEP 1303, 051 (2013). arXiv:1210.7114 [hep-ph]

  36. G. Cacciapaglia, H. Cai, T. Flacke, S.J. Lee, A. Parolini et al., Anarchic Yukawas and top partial compositeness: the flavour of a successful marriage. arXiv:1501.03818 [hep-ph]

  37. O. Matsedonskyi, On flavour and naturalness of composite Higgs models. JHEP 1502, 154 (2015). arXiv:1411.4638 [hep-ph]

  38. R. Barbieri, G. Isidori, D. Pappadopulo, Composite fermions in electroweak symmetry breaking. JHEP 0902, 029 (2009). arXiv:0811.2888 [hep-ph]

    Google Scholar 

  39. M. Redi, A. Weiler, Flavor and CP invariant composite Higgs models. JHEP 1111, 108 (2011). arXiv:1106.6357 [hep-ph]

  40. G. Cacciapaglia, C. Csaki, J. Galloway, G. Marandella, J. Terning et al., A GIM mechanism from extra dimensions. JHEP 0804, 006 (2008). arXiv:0709.1714 [hep-ph]

    Google Scholar 

  41. C. Delaunay, O. Gedalia, S.J. Lee, G. Perez, E. Ponton, Ultra visible warped model from flavor triviality and improved naturalness. Phys. Rev. D83, 115003 (2011). arXiv:1007.0243 [hep-ph]

  42. C. Delaunay, O. Gedalia, S.J. Lee, G. Perez, E. Ponton, Extraordinary phenomenology from warped flavor triviality. Phys. Lett. B703, 486–490 (2011). arXiv:1101.2902 [hep-ph]

    Google Scholar 

  43. R. Rattazzi, A. Zaffaroni, Comments on the holographic picture of the Randall-Sundrum model. JHEP 0104, 021 (2001). arXiv:hep-th/0012248 [hep-th]

    Google Scholar 

  44. J. Santiago, Minimal flavor protection: a new flavor paradigm in warped models. JHEP 0812, 046 (2008). arXiv:0806.1230 [hep-ph]

    Google Scholar 

  45. R. Barbieri, D. Buttazzo, F. Sala, D.M. Straub, Flavour physics from an approximate U(2)3 symmetry. JHEP 1207, 181 (2012). arXiv:1203.4218 [hep-ph]

  46. M. Redi, Composite MFV and beyond. Eur. Phys. J. C72, 2030 (2012). arXiv:1203.4220 [hep-ph]

  47. O. Domenech, A. Pomarol, J. Serra, Probing the SM with Dijets at the LHC. Phys. Rev. D85, 074030 (2012). arXiv:1201.6510 [hep-ph]

  48. C. Delaunay, T. Flacke, J. Gonzalez-Fraile, S.J. Lee, G. Panico et al., Light non-degenerate composite partners at the LHC. JHEP 1402, 055 (2014). arXiv:1311.2072 [hep-ph]

  49. M. Redi, V. Sanz, M. de Vries, A. Weiler, Strong signatures of right-handed compositeness. JHEP 1308, 008 (2013). arXiv:1305.3818

  50. K. Agashe, Relaxing constraints from lepton flavor violation in 5D flavorful theories. Phys. Rev. D80, 115020 (2009). arXiv:0902.2400 [hep-ph]

  51. K. Agashe, A.E. Blechman, F. Petriello, Probing the Randall-Sundrum geometric origin of flavor with lepton flavor violation. Phys. Rev. D74, 053011 (2006). arXiv:hep-ph/0606021 [hep-ph]

  52. C. Csaki, Y. Grossman, P. Tanedo, Y. Tsai, Warped penguin diagrams. Phys. Rev. D83, 073002 (2011). arXiv:1004.2037 [hep-ph]

  53. C. Csaki, C. Delaunay, C. Grojean, Y. Grossman, A model of lepton masses from a warped extra dimension. JHEP 0810, 055 (2008). arXiv:0806.0356 [hep-ph]

    Google Scholar 

  54. F. del Aguila, A. Carmona, J. Santiago, Neutrino masses from an A4 symmetry in holographic composite Higgs models. JHEP 1008, 127 (2010). arXiv:1001.5151 [hep-ph]

  55. C. Hagedorn, M. Serone, Leptons in holographic composite Higgs models with non-Abelian discrete symmetries. JHEP 1110, 083 (2011). arXiv:1106.4021 [hep-ph]

  56. C. Hagedorn, M. Serone, General lepton mixing in holographic composite Higgs models. JHEP 1202, 077 (2012). arXiv:1110.4612 [hep-ph]

  57. M. Redi, Leptons in composite MFV. JHEP 1309, 060 (2013). arXiv:1306.1525 [hep-ph]

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Panico, G., Wulzer, A. (2016). Flavor. In: The Composite Nambu-Goldstone Higgs. Lecture Notes in Physics, vol 913. Springer, Cham. https://doi.org/10.1007/978-3-319-22617-0_4

Download citation

Publish with us

Policies and ethics