Skip to main content

Part of the book series: Handbook of Environmental Engineering ((HEE,volume 16))

Abstract

The presence of ice in rivers is an important aspect to be considered in the development of water resources in cold regions. River ice research has largely been driven by engineering and environmental problems that concern society. Ice formation can affect the design, operation, and maintenance of hydraulic engineering facilities, in addition to issues related to ecological, environmental, and morphological aspects of the river. River ice processes involve complex interactions between hydrodynamic, mechanical, and thermal processes. They are also influenced by weather and hydrologic conditions. This chapter gives a brief overview of river ice processes, followed by discussions on the state of knowledge of these processes from freeze-up to breakup, and sediment transport in rivers under ice conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A :

Flow cross sectional area under the cover, m2

A s :

Mass rate of snowfall over a unit area of water surface, \( \mathrm{kg}\;{\mathrm{m}}^{-2}\;{\mathrm{s}}^{-1} \)

a 0 :

Mean area of frazil crystal discs, mm

B :

Top width of channel, m

B a :

River surface width in the wind direction, m

B o :

Open water width, m

C :

Cloud cover in tenths

C a :

Area concentration of surface ice

C b :

Fraction of bed width covered by anchor ice

C i :

Specific heat of ice, \( 4.1855\times {10}^3\;\mathrm{J}\;{\mathrm{kg}}^{-1}\;{}^{\circ}\mathrm{C} \)

C p :

Specific heat of water, \( 4.215\times {10}^3\;\mathrm{J}\;{\mathrm{kg}}^{-1}\;{}^{\circ}\mathrm{C} \) check p. 25?

C v :

Suspended ice concentration

C g v :

Suspended ice concentration due to thermal growth

C o :

A reference sediment concentration at a near bed reference level z o , cm

C w :

Wind drag coefficient on water surface

C z :

Chezy’s coefficient, \( {\mathrm{m}}^{0.5}\;{\mathrm{s}}^{-1} \)

C a,max :

Maximum allowable surface ice concentration

C s :

Suspended sediment concentration, mg/L

\( {c}_f=\frac{n_b^2g}{{\left({\alpha}_bH\hbox{'}\right)}^{{\scriptscriptstyle \raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$3$}\right.}}} \) :

Bed friction coefficient

\( {c}_{iw}=\frac{n_i^2g}{{\left({\alpha}_iH\hbox{'}\right)}^{{\scriptscriptstyle \raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$3$}\right.}}} \) :

Coefficient of water drag on ice

D :

Sediment particle diameter, cm

D H :

Hydraulic diameter, m

\( {D}_{*}={D}_{50}{\left[\left(s-1\right)g/{\nu}^2\right]}^{1/3} \) :

A dimensionless sediment particle parameter

D 50 :

Median diameter of sediment, cm

d e :

Frazil crystal thickness, mm

\( {d}_n \) :

Nominal diameter of under-cover granular ice, cm

d a :

Day number of the year counting from January 1

E :

Net volumetric rate of loss of frazil due to exchange with the surface layer and the anchor ice, m3/s

E a :

Rate of change of surface ice concentration due to sources and sinks, s−1

E m :

Rate of change of surface ice mass per unit area of water surface due to sources and sinks, kg/m

E o :

Eccentricity correction factor of the earth’s orbit

e a :

Vapor pressure, mb

e an :

Porosity of anchor ice

e c :

Porosity in the accumulation between ice floes

e f :

Porosity of the frazil ice portion of surface ice floes

\( {e}_j={e}_c+\left(1-{e}_c\right){e}_p \) :

Overall porosity of the surface ice accumulation

e p :

Porosity of ice floes

e s :

Saturated vapor pressure above the river surface, mb

e so :

Saturated vapor pressure corresponding to the river surface temperature, mb

\( {e}_T={C}_p\rho \left(1-{C}_v\right){T}_w-{\rho}_i{C}_v{L}_i \) :

Thermal energy of the ice–water mixture per unit volume, J/m3

e u :

Porosity of the frazil jam

F :

Shape factor of under-cover granular ice

\( {\overrightarrow{F}}_a \) :

Wind drag on ice, N/m2

F b :

Inter-bed particle resistance per unit area, N/m2

F rc :

A critical Froude number beyond which juxtaposition of ice floes cannot occur

F rp :

A limiting Froude number for cover progression

\( {\overrightarrow{F}}_w \) :

Water drag on ice, N/m2

f :

Fraction of the width covered by border ice cover

\( \overrightarrow{G} \) :

Gravitational force along the water surface slope, N/m2

g :

Gravity, m/s2

H :

Water level, m

H T  = H R  + η :

Total water depth from channel bottom to the water surface, m

H′ = H R  + η′:

Water depth beneath the ice layer, m

H R :

Water depth below the reference level, m

H t :

Water depth underneath an equivalent ice–water interface, m

\( {h}_e={h}_i+{h}_f\left(1-{e}_f\right) \) :

Equivalent thickness of surface ice floes, m

h f :

Thickness of the frazil accumulation on the underside of surface ice floes, m

h i :

Thickness of the solid portion of surface ice floes, m

h i,p :

Thickness of the porous portion of the ice cover, m

h iws :

Heat exchange coefficient between anchor ice and the substrate flow, W/m2 °C

h s :

Snow cover thickness on top of the ice cover, m

h sa :

Heat transfer coefficient at the snow–air interface, W/m2 °C

h sb :

Substrate flow depth at the bottom of the anchor ice, m

h wi :

Heat transfer coefficient between water and ice cover, W/m2 °C

I so :

Solar constant, 1367 W/m2

K w :

Thermal conductivity of water, W m−1 °C−1

k i :

Thermal conductivity of ice cover, W m−1 °C−1

k ic :

Ice cover roughness height, m

k n :

Decay constant of the ice cover roughness coefficient, day−1

k s :

Thermal conductivity of snow cover, W m−1 °C−1

L i :

Latent heat of fusion of ice, \( 3.3484\times {10}^5\;\mathrm{J}\;{\mathrm{kg}}^{-1} \)

\( {M}_i={\rho}_i{C}_a{t}_i \) :

Surface ice mass per unit area, kg/m2

m :

Optical air mass

m o :

Optical air mass at sea level

N f :

Number of frazil particles per unit volume, 1/m3

\( {N}_u={h}_{wi}{D}_H/{K}_w \) :

Nusselt number

n b , n i , and n c :

Bed, ice cover, and composite Manning’s coefficients, respectively, s ft−1/3

n io :

Single layer surface ice roughness, s ft−1/3

n o , n e :

Initial and end values of the ice cover roughness coefficient, s ft−1/3

P :

Internal pressure of pack ice, Pa

\( {P}_r={C}_p\mu {K}_w \) :

Prandtl number

p a :

Atmospheric pressure, mb

p b and p i :

Wetted perimeters formed by the channel bed and the ice cover, respectively, m

p o :

Atmospheric pressure at sea level, mb

Q :

Water discharge, m3/s

Q i d , Q i s :

Volumetric rates of suspended and surface ice discharge, respectively, m3/s

Q u :

Volumetric rate of ice entertainment under the cover at the leading edge, m3/s

q f :

Heat transfer between water and a frazil particle per unit frazil surface area, J/cm2 s

q b :

Volumetric rate of bed sediment transport per unit width, m3/s

q c :

Volumetric rate of undercover ice transport per unit width, m3/s

\( {\overset{\rightharpoonup }{q}}_l \), and \( {\overset{\rightharpoonup }{q}}_u \) :

Unit-width water discharge beneath the ice layer, and in the ice layer, respectively, m2/s

q s :

Seepage flow in the surface ice layer, m3/s

\( {\overset{\rightharpoonup }{q}}_{ice} \) :

Unit-width surface ice discharge, m3/s

R :

Hydraulic radius, m

R a :

Rate of change of surface ice concentration due to mechanical redistribution of the ice mass, 1/s

R an :

Contribution to the surface ice run from anchor ice release, m3/s

R b :

Rate of lateral growth of border ice, m/h

R c :

Radius of curvature of the centreline of the ice sheet, m

R i :

Hydraulic radius associated with the ice cover, m

\( {R}_{eH}=\rho U{D}_H/\mu \) :

Reynolds number

R t :

Albedo of river surface

\( \overrightarrow{R} \) :

Internal ice resistance due to floe-to-floe interactions, N/m2

RH :

Relative humidity in percentage, %

r s :

Reflectivity of long wave radiation from the river surface

S f :

Friction slope of the channel

S w :

Water surface slope

S 5 :

Cumulative degree-days above −5 °C, °C day

\( s={\rho}_s/\rho \) :

The ratio of sediment density and water density

T :

Temperature in the cover, °C

T a :

Air temperature, °C

T cr :

Supercooled water surface temperature below which static skim ice will form, °C

T ak :

Air temperature at 2 m above the surface, in the absolute scale, K

T m :

Freezing point of water, 0 °C

T s :

River surface temperature, °C

T t :

A sediment transport stage parameter

T sk :

River surface temperature in the absolute scale, K

T sn :

Snow surface temperature, °C

T w :

Cross section-averaged water temperature, °C

T w,s :

Water surface temperature, °C

t eq :

Equilibrium ice jam thickness, defined as the jam thickness in the uniform reach, m

t f :

Thickness of frazil jam, m

t i :

Surface ice layer or ice cover thickness, m

t i :

Submerged surface ice layer thickness, m

u * i :

Shear velocity on the undersurface of the frazil jam, m/s

v a2 :

Wind velocity at 2 m above the surface, m/s

v b :

Buoyancy velocity of frazil ice, m/s

v 0 :

Mean volume of frazil crystals, cm3

v ' z :

Vertical component of turbulent fluctuation velocity, m/s

U :

Cross-section-averaged flow velocity, m/s

U s :

Width-averaged surface ice velocity, m/s

V a :

Wind velocity, m/s

V cb :

Maximum velocity at which a surface ice floe can adhere to the border ice edge, m/s

V cp :

Rate of progression of leading edge, m/s

\( \widehat{V} \) :

Visibility, km

\( \forall \) :

Volume of anchor ice per unit bed area, m

\( {\overset{\rightharpoonup }{V}}_i \) :

Surface ice velocity, m/s

\( {\overset{\rightharpoonup }{V}}_w \) :

Water current velocity underneath the ice cover, m/s

W b :

Submerged weight of bed materials per unit area, N/m2

W i :

Width of ice sheet detached from banks, i.e. the distance between hinge cracks, m

x, y, and t :

Space and time variables, m and s

α :

Probability of deposition of frazil particles reaching the surface layer

α b :

Fraction of the water depth affected by the bed friction

α i :

Fraction of the water depth affected by the ice friction

α z :

Solar latitude, angular elevation of the sun above the true horizon, degrees

β :

Coefficient quantifying the rate of re-entrainment of surface ice per unit area, 1/s

γ :

Coefficient quantifying the rate of accretion to the bed per unit area, m/s

\( {\gamma}_e=0.5{\rho}_ig\left(1-{\scriptscriptstyle \frac{\rho_i}{\rho }}\right)\left(1-{e}_j\right) \) :

N/m3

ΔB :

Growth of border ice width for a given time step, m

Δ d :

Dune height, m

Δ i :

\( \mathrm{The}\ \mathrm{ratio}\left(\rho -{\rho}_i\right)/\rho \)

Δϕ*:

Surface heat exchange during a time step, \( \mathrm{J}\;{\mathrm{m}}^{-2} \)

δ :

Solar declination, in radians

ε a :

Emissivity of atmosphere

ε s :

Emissivity of river surface

ξ i :

Bulk extinction coefficient, 1/cm

η :

Water surface elevation, m

η′:

Elevation of the bottom of surface ice, m

\( \tilde{\eta}=\frac{\varTheta }{\varTheta_c} \) :

Ratio of θ to the critical value of θ for incipient motion

\( \varTheta =\frac{\tau_b}{\Delta \rho gD} \) :

Dimensionless flow strength for sediment transport

Θ c :

Critical value of Θ for incipient motion

Θ i :

Dimensionless flow strength for cover load transport

Θ ci :

Critical flow strength for undercover ice transport

θ a :

Angle between the wind direction and the x-axis, degree

λ s :

Seepage coefficient in the pack ice, m/s

μ :

Dynamic viscosity of water, N s/m2

μ i :

Ice-over-ice friction coefficient

\( \widehat{\nu} \) :

Nonlinear shear viscosity of the surface ice run

п:

A stress parameter for ice cover during breakup period, kPa

ρ, ρ a , ρ i , and ρ s :

Density of water, air, ice, and sediment, respectively, kg/m3

σ:

Stefan–Boltzmann constant, 5.67 × 10−8 W m−2 K−4

σ f :

Flexural strength of the ice cover, kPa

σ ij :

Internal ice stress in the surface ice layer, N/m2

τ a :

Wind drag on the water or ice surface along the channel, N/m2

τ ai :

Wind drag on ice, N/m2

τ aw :

Wind drag on water, N/m2

τ b , τ i :

Shear stresses at the channel bottom and the ice–water interface, respectively, N/m2

τ s :

Shear stresses at the ice–water interface, N/m2

\( {\tau}^{\left(a-w\right)} \) :

Wind shear stress on water surface, N/m2

\( {\tau}^{\left(i-w\right)} \) :

Shear stress at the ice–water interface, N/m2

τ c :

Cohesion in the shear stress of floating surface ice accumulation, N/m2

τ g :

Weight component of the ice cover along the surface slope, N/m

τ w :

Water drag, N/m2

\( {\tilde{\tau}}_i \) :

Driving stress on the ice cover during breakup period, N/m2

Φ i :

Dimensionless under-cover ice transport capacity

\( {\varPhi}_b=\frac{q_b}{\sqrt{\Delta g{D}^3}} \) :

Dimensionless bed load intensity

φ :

Internal friction angle of surface ice, degree

ϕ b :

Bed heat flux per unit area, W/m2

ϕ ba :

Atmospheric long-wave radiation reaching the river surface, kJ/m2 h

ϕ br :

Reflected long wave radiation from the river surface, kJ/m2 h

ϕ bs :

Long wave radiation emitted by the water surface, kJ/m2 h

ϕ B :

Effective back radiation or terrestrial radiation, kJ/m2 h

ϕ cl :

Incoming short wave radiation under clear skies, kJ/m2 h

ϕ E :

Evaporation heat transfer, kJ/m2 h

ϕ H :

Sensible heat transfer, kJ/m2 h

ϕ ia :

Heat loss at the air-ice interface, kJ/m2 h

ϕ P :

Heat transfer due to precipitation on the water surface, kJ/m2 h

ϕ ps , ϕ pz :

Solar radiation on the ice cover surface, and at a depth below the ice surface, kJ/m2 h

ϕ ri :

Incoming solar radiation, kJ/m2 h

ϕ rr :

Solar radiation reflected back to the atmosphere, kJ/m2 h

ϕ R :

Net solar radiation, kJ/m2 h

ϕ si :

Net rate of heat loss from top and bottom of surface ice floes, kJ/m2 h

ϕ sk :

Rate of heat loss through top and bottom of the suspended ice layer, kJ/m2 h

ϕ so :

Total extraterrestrial solar radiation incident on a horizontal surface, kJ/m2 h

ϕ ss :

Rate of heat gain through top and bottom of the suspended layer, kJ/m2 h

ϕ v :

Rate of internal heating of the cover due to absorption of penetrated short wave radiation, kJ/m2 h

ϕ wi :

Heat flux between river water and ice cover, kJ/m2 h

ϕ*:

Total surface heat flux between air and water, ϕ wa , or between ice and air, ϕ ia , kJ/m2 h

ϕ * s :

Rate of heat loss at the snow surface, kJ/m2 h

ψ :

Latitude in degrees, north positive, south negative

ω :

Hour angle, degrees

References

  1. Shen, H. T. (1996). River ice processes – State of research. In Proceedings, 13th IAHR Symposium on Ice (pp. 825–833). Beijing.

    Google Scholar 

  2. Carsterns, T. (1966). Experiments with supercooling and ice formation in flowing water. Geofysiske Publikasjoner, 26(9), 3–18.

    Google Scholar 

  3. Ye, S. Q., Deoring, J., & Shen, H. T. (2004). A laboratory study of frazil evolution in a counter-rotating flume. Canadian Journal of Civil Engineering, 31, 899–914.

    Article  Google Scholar 

  4. Matousek, V. (1984). Types of ice run and conditions for their formation. In Proceedings, IAHR Ice Symposium (pp. 315–327).

    Google Scholar 

  5. Osterkemp, T. E. (1978). Frazil ice formation: A review. Journal of Hydraulics Division, 104(HY9), 1239–1255.

    Google Scholar 

  6. Daly, S. F. (1984). Frazil ice dynamics. CRREL Monograph 84-1. U.S. Army CRREL, Hanover.

    Google Scholar 

  7. Hammar, L., & Shen, H. T. (1995). Frazil evolution in channels. Journal of Hydraulic Research, 33(3), 291–306.

    Article  Google Scholar 

  8. Kerr, D. J., Shen, H. T., & Daly, S. F. (2002). Evolution and hydraulic resistance of anchor ice on gravel bed. Cold Regions Science and Technology, 35(2), 101–114.

    Article  Google Scholar 

  9. Prowse, T. D., & Gridley, N. C. (Eds.). (1993). Environmental aspects of river ice (NHRI Science Report No. 5, 155 pp). Saskatoon: National Hydrology Research Institute.

    Google Scholar 

  10. Tsang, G., & Lau, Y. (1995). Frazil and anchor ice laboratory investigations. In Proceedings, 8th Workshop on Hydraulics of Ice Covered Rivers. Kamloops

    Google Scholar 

  11. Yamazaki, M., Hirayama, K., Sakai, S., Sasamoto, M., Kiyohara, M., & Takiguchi, H. (1996). Formation of frazil and anchor ice. In Proceedings, 13th IAHR International Symposium on Ice (pp. 488–496). Beijing.

    Google Scholar 

  12. Doering, J. C., Berkeris, L. E., Morris, M. P., & Girling, W. C. (2001). Laboratory study of anchor ice growth. Journal of Cold Regions Engineering, 15(1), 60–66.

    Article  Google Scholar 

  13. Lal, A. M. W., & Shen, H. T. (1991). A mathematical for river ice processes. Journal of Hydraulic Engineering, 117(7), 851–867.

    Article  Google Scholar 

  14. Andres, D. (1995). Floe development during frazil generation in large rivers. In Proceedings, 8th Workshop on the Hydraulics of Ice Covered Rivers. Kamloops.

    Google Scholar 

  15. Michel, B., Marcotte, N., Fonseca, F., & Rivard, G. (1980). Formation of border ice in the St. Anne River. In Proceedings of Workshop on Hydraulics of Ice-Covered Rivers (pp. 38–61). Edmonton.

    Google Scholar 

  16. Shen, H. T., & Van DeValk, W. A. (1984). Field investigation of St. Lawrence River hanging ice dams. In Proceedings, IAHR Ice Symposium (pp. 241–249). Hamburg.

    Google Scholar 

  17. Matousek, V. (1990). Thermal processes and ice formation in rivers (Papers and Studies No. 180, 146 pp). Prague: Water Research Institute.

    Google Scholar 

  18. Pariset, R., & Hausser, H. (1961). Formation and evolution of ice covers on rivers. Transactions, Engineering Institute of Canada, 5(1), 41–49.

    Google Scholar 

  19. Pariset, R., Hausser, H., & Gagnon, A. (1966). Formation of ice cover and ice jams in rivers. Journal of the Hydraulics Division, 92(HY6), 1–24.

    Google Scholar 

  20. Uzuner, M. S., & Kennedy, J. F. (1976). Theoretical model of river ice jams. Journal of the Hydraulics Division, 102(HY9), 1365–1383.

    Google Scholar 

  21. Tatinclaux, J.-C. (1977). Equilibrium thickness of ice jams. Journal of the Hydraulics Division, ASCE, 103(HY9), 959–974.

    Google Scholar 

  22. Beltaos, S. (1983). River ice jams: Theory, case studies and applications. Journal of Hydraulic Engineering, 109(10), 1338–1359.

    Article  Google Scholar 

  23. Flato, G. M., & Gerard, R. (1986). Calculation of ice jam profiles. In Proceedings, 4th Workshop on River Ice. Montreal, Paper C-3.

    Google Scholar 

  24. Beltaos, S., & Wong, J. (1986). Downstream transition of river ice jams. Journal of Hydraulic Engineering, 112(2), 91–110.

    Article  Google Scholar 

  25. Shen, H. T., Shen, H., & Tsai, S. M. (1990). Dynamic transport of river ice. Journal of Hydraulic Research, 28(6), 659–671.

    Article  Google Scholar 

  26. Shen, H. T., Su, J., & Liu, L. (2000). SPH simulation of river ice dynamics. Journal of Computational Physics, 165(2), 752–771.

    Article  CAS  Google Scholar 

  27. Shen, H. T., & Liu, L. (2003). Shokotsu River ice jam formation. Cold Regions Science and Technology, 37(1), 35–49.

    Article  Google Scholar 

  28. Shen, H. T., Gao, L., Kolerski, T., & Liu, L. (2008). Dynamics of ice jam formation and release. Journal of Coastal Research, S52(2008), 25–32.

    Article  Google Scholar 

  29. Ashton, G. D. (1974). Froude criterion for ice block stability. Journal of Glaciology, 13(689), 307–313.

    Google Scholar 

  30. Shen, H. T., & Ho, C. F. (1986). Two-dimensional simulation of ice cover formation in a large river. In Proceedings, IAHR Ice Symposium (pp. 547–558). Iowa City.

    Google Scholar 

  31. Sun, Z. C., & Shen, H. T. (1988). A field investigation of frazil jam in Yellow River. In Proceedings, 5th Workshop on Hydraulics of River Ice/Ice Jams (pp. 157–175). Winnipeg.

    Google Scholar 

  32. Michel, B. (1984). Comparison of field data with theories on ice cover progression in large rivers. Canadian Journal of Civil Engineering, 11(4), 798–814.

    Article  Google Scholar 

  33. Kivisild, H. R. (1959). Hydrodynamic analysis of ice floods. In Proceedings, 8th IAHR Congress. Montreal, Paper 23F.

    Google Scholar 

  34. Tesaker, E. (1975). Accumulation of frazil ice in an intake reservoir. In Proceedings, IAHR Symposium on Ice Problems. Hanover, NH.

    Google Scholar 

  35. Michel, B., & Drouin, M. (1975). Equilibrium of a Hanging Dam at the La Grande River (Report GCS-75-03-01). Quebec: Laval University.

    Google Scholar 

  36. Shen, H. T., & Wang, D. S. (1995). Under cover transport and accumulation of frazil granules. Journal of Hydraulic Engineering, 120(2), 184–194.

    Article  Google Scholar 

  37. White, K. D., & Acone, S. E. (1995). Assessing the effects of dam operation on upstream ice conditions: Aroostook River at Fort Fairfield, Maine. In Proceedings, 8th Workshop on Hydraulics of Ice Covered Rivers. Kamloops.

    Google Scholar 

  38. Mao, Z.-Y., Zhao, X. F., Wang, A.-M., Xu, X., & Wu, J.-J. (2008). Two-dimensional numerical model for river-ice processes based upon boundary-fitted coordinate transformation method. In Proceedings, 19th International Symposium on Ice (pp. 141–152). Vancouver.

    Google Scholar 

  39. Shen, H. T., & Yapa, P. D. (1985). A unified degree-day method for river ice cover thickness simulation. Canadian Journal of Civil Engineering, 12, 54–62.

    Article  Google Scholar 

  40. Ashton, G. D. (Ed.). (1986). River and lake ice engineering. Littleton, CO: Water Resources Publications.

    Google Scholar 

  41. Shen, H. T., & Chiang, L. A. (1984). Simulation of growth and decay of river ice cover. Journal of Hydraulics Division, 110(7), 958–971.

    Article  Google Scholar 

  42. Calkins, D. J. (1979). Accelerated ice growth in rivers (CRREL Report 79-14, 4 pp). Hanover: US Army Cold Regions Research and Engineering Laboratory.

    Google Scholar 

  43. Shen, H. T., & Lal, A. M. W. (1986). Growth and decay of river ice covers. In Proceedings, Cold Regions Hydrology Symposium (pp. 583–591). Fairbanks.

    Google Scholar 

  44. Ashton, G. D., & Kennedy, J. F. (1972). Ripples on underside of river ice covers. Journal of Hydraulic Engineering, 98, 1603–1624.

    Google Scholar 

  45. Ashton, G. D. (1985). Deterioration of floating ice covers. Journal of Energy Resources Technology, 107, 177–182.

    Article  Google Scholar 

  46. Prowse, T. D., Demuth, M. N., & Chew, H. A. M. (1990). The deterioration of freshwater ice under radiation decay. Journal of Hydraulic Research, 28(6), 685–691.

    Article  Google Scholar 

  47. Beltaos, S. (1984). A conceptual model of river ice breakup. Canadian Journal of Civil Engineering, 17(2), 173–183.

    Article  Google Scholar 

  48. Beltaos, S. (2003). Threshold between mechanical and thermal breakup of river ice cover. Cold Regions Science and Technology, 37, 1–13.

    Article  Google Scholar 

  49. Foltyn, E. P., & Shen, H. T. (1986). St. Lawrence River freeze-up forecast. Journal of Waterway, Port, Coastal and Ocean Engineering, 112(4), 467–481.

    Article  Google Scholar 

  50. Potok, A. J., & Quinn, F. H. (1979). A hydraulic transient model of the Upper St. Lawrence River for water resources research. Water Resources Bulletin, 15(6).

    Google Scholar 

  51. Hicks, B. B. (1972). Some evaluation of drag and bulk transfer coefficients over water. Boundary Layer Meteorology, 3, 211–213.

    Google Scholar 

  52. Wake, A., & Rumer, R. R., Jr. (1979). Modeling ice regime in Lake Erie. Journal of Hydraulics Division, 105(HY7), 827–844.

    Google Scholar 

  53. Yapa, P. D., & Shen, H. T. (1986). Unsteady flow simulation for an ice-covered river. Journal of Hydraulic Engineering, 112(11), 1036–1049.

    Article  Google Scholar 

  54. Nezhikovskiy, R. A. (1964). Coefficients of roughness of bottom surface of slush ice cover. Soviet Hydrology: Selected Papers, 2, 127–148.

    Google Scholar 

  55. Beltaos, S. (1993). Flow through breakup jams. In Proceeding, 11th Canadian Hydrotechnical Conference (pp. 643–652). Fredericton.

    Google Scholar 

  56. Beltaos, S. (1993). Numerical computation of river ice jams. Canadian Journal of Civil Engineering, 20(1), 88–99.

    Article  Google Scholar 

  57. Lu, S., Shen, H. T., & Crissman, R. D. (1999). Numerical study of ice jam dynamics in Upper Niagara River. Journal of Cold Regions Engineering, 13(2), 78–102.

    Article  Google Scholar 

  58. Shen, H. T. (2010). Mathematical modeling of river ice processes. Cold Regions Science and Technology, 62(1), 3–13.

    Article  Google Scholar 

  59. Wu, J. (1973). Prediction of near-surface drift currents from wind velocity. Journal of Hydraulics Division, 99(9), 1291–1301.

    Google Scholar 

  60. Paily, P. P., Macagon, E. O., & Kennedy, J. F. (1974). Winter-regime surface heat loss from heated streams (IIHR Report No. 155, 137 pp). Iowa City, IA: Iowa Institute of Hydraulic Research.

    Google Scholar 

  61. Iqbal, M. (1983). An introduction to solar radiation. Down Mills: Academic Press Canada, Inc.

    Google Scholar 

  62. Bolsenga, S. J. (1969). Total albedo of Great Lakes ice. Water Resources Research, 5(5), 1132–1133.

    Article  Google Scholar 

  63. Pivovarov, A. A. (1973). Thermal conditions in freezing lakes and rivers. New York: Wiley.

    Google Scholar 

  64. Satterland, D. R. (1979). An improved equation for estimating long-wave radiation from the atmosphere. Water Resources Research, 15(6), 1649–1650.

    Article  Google Scholar 

  65. Rimsha, V. A., & Donchenko, R. V. (1957). The investigation of heat loss from free water surfaces in wintertime (in Russian). Trudy Leningrad Gosud. Gidrol. Inst., 65, 58–83.

    Google Scholar 

  66. Dingman, S. L., & Assur, A. (1969). The effects of thermal pollution on river-ice conditions, Part II (Technical Report). Hanover, NH: US Army Cold Regions Research and Engineering Laboratory.

    Google Scholar 

  67. Haynes, F. D., & Ashton, G. D. (1979). Turbulent heat transfer in large aspect channels (CRREL Report 79-13, 5 pp). Hanover, NH: US Army Cold Regions Research and Engineering Laboratory.

    Google Scholar 

  68. Shen, H. T., Wang, D. S., & Lal, A. M. W. (1995). Numerical simulation of river ice processes. Journal of Cold Regions Engineering, ASCE, 9(3), 107–118.

    Article  Google Scholar 

  69. Hibler, W. D. (1979). A dynamic thermodynamic sea ice model. Journal of Physical Oceanography, 9(4), 815–846.

    Article  Google Scholar 

  70. Wake, A., & Rumer, R. R., Jr. (1983). Great Lakes ice dynamics simulation. Journal of Waterway, Port, Coastal, and Ocean Engineering, 109(1), 86–102.

    Article  Google Scholar 

  71. Ji, S., Shen, H. T., Wang, Z., Shen, H. H., & Yue, Q. (2005). A viscoelastic-plastic constitutive model with Mohr-Coulomb yielding criterion for sea ice dynamics. Acta Oceanologica Sinica, 24(4), 54–65.

    Google Scholar 

  72. Arden, R. S., & Wigle, T. E. (1972). Dynamics of ice formation in the Upper Niagara River. In Proceedings, The Role of Snow and Ice in Hydrology (pp. 1296–1313). IAHS-UNESCO-WMO, Banff.

    Google Scholar 

  73. Marcotte, N., & Roberts, S. (1984). Elementary mathematical modeling of anchor ice. In Proceedings, IAHR Ice Symposium (pp. 151–161). Hamburg.

    Google Scholar 

  74. Girling, W. C., & Groeneveld, J. (1999). Anchor ice formation below Limestone Generating Station. In Proceedings of the 10th River Ice Workshop, River Ice Management with a Changing Climate (pp. 160–173). Winnipeg.

    Google Scholar 

  75. Beltaos, S. (2008). Progress in the study and management of river ice jams. Cold Regions Science and Technology, 51, 2–19.

    Article  Google Scholar 

  76. Beltaos, S. (2001). Hydraulic roughness of breakup ice jams. Journal of Hydraulic Engineering, 127(8), 650–656.

    Article  Google Scholar 

  77. Wake, A., & Rumer, R. R., Jr. (1979). Effect of surface meltwater accumulation on the dissipation of lake ice. Water Resources Research, 15(2).

    Google Scholar 

  78. Greene, G. M. (1981). Simulation of ice-cover growth and decay in one-dimensional on the Upper St. Lawrence River (NOAA Tech. Memo. ERL GLERL-36). Ann Arbor, MI.

    Google Scholar 

  79. Smith, B. T., & Ettema, R. (1995). Ice-cover influence on flow and bedload transport in dune-bed channels (IIHR Rep. No. 374). Iowa City, IA: Iowa Inst. of Hydraulic Research, University of Iowa.

    Google Scholar 

  80. Xia, X., & Shen, H. T. (2002). Nonlinear interaction of ice cover with shallow water wave in channels. Journal of Fluid Mechanics, 467, 259–267.

    Article  Google Scholar 

  81. Billfalk, L. (1982). Breakup of solid ice covers due to rapid water level variations (CRREL Report 82-3). Hanover, NH: US Army Cold Regions Research and Engineering Laboratory.

    Google Scholar 

  82. Beltaos, S. (1990). Fracture and breakup of river ice cover. Canadian Journal of Civil Engineering, 17(2), 173–183.

    Article  Google Scholar 

  83. Beltaos, S. (Ed.). (2008). River ice breakup. Highlands Ranch, CO: Water Resources Publications.

    Google Scholar 

  84. Shen, H. T., & Lu, S. (1996). Dynamics of river ice jam release. In Proceedings, 8th International Conference on Cold Regions Engineering, ASCE (pp. 594–605). Fairbanks.

    Google Scholar 

  85. Prowse, T. D. (1990). Heat and mass balance of an ablating ice jam. Canadian Journal of Civil Engineering, 17(4), 629–635.

    Article  Google Scholar 

  86. Beltaos, S., & Burrell, B. C. (2006). Water temperature decay under breakup ice jams. Cold Regions Science and Technology, 45, 123–136.

    Article  Google Scholar 

  87. Jasek, M. (2003). Ice jam release surges, ice runs, and breaking fronts: Field measurements, physical descriptions, and research needs. Canadian Journal of Civil Engineering, 30, 113–127.

    Article  Google Scholar 

  88. Mercer, A. G., & Cooper, R. H. (1977). Bed scour related to the growth of a major ice jam. In Proceedings of the 3rd National Hydrotechnical Conference (pp. 291–208). Quebec, Canada.

    Google Scholar 

  89. Lawson, D. E., Chacho, E. F., Brockett, B. E., Wuebben, J. L., & Collins, C. M. (1986). Morphology, hydraulics, and sediment transport of an ice covered river: Field techniques and initial data (CRREL Report 86-11). Hanover, NH: Cold Regions Research and Engineering Laboratory.

    Google Scholar 

  90. Yang, X., Zhang, B., & Shen, H. T. (1993). Simulation of wintertime fluvial processes in the lower Yellow River. Journal of Sedimentary Research, 2, 36–43.

    Google Scholar 

  91. Knack, I. M., & Shen, H. T. (2013). A numerical model for sediment transport and bed change in rivers with ice. In Proceedings, 12th International Symposium on River Sedimentation. Kyoto.

    Google Scholar 

  92. Lau, Y. L., & Krishnappan, B. G. (1985). Sediment transport under ice cover. Journal of Hydraulic Engineering, 111(6), 934–950.

    Article  Google Scholar 

  93. Al-Abed, N. M. A. (1989). Sediment transport under ice covered channels. Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy, Civil and Environmental Engineering, University of Kashmir.

    Google Scholar 

  94. Ettema, R., Braileanu, F., & Muste, M. (1999). Laboratory study of suspended sediment transport in ice-covered flow (IIHR Rep. No. 404). Iowa City, IA: Iowa Institute of Hydraulic Research, University of Iowa.

    Google Scholar 

  95. Ettema, R., Braileanu, F., & Muste, M. (2000). Method for estimating sediment transport in ice-covered channels. Journal of Cold Regions Engineering, 14(3), 130–144.

    Article  Google Scholar 

  96. Brown, C. B. (1950). Sediment transport. In H. Rouse (Ed.), Engineering hydraulics. New York: John Wiley & Sons.

    Google Scholar 

  97. Meyer-Peter, E., & Muller, R. (1948). Formulas for bed-load transport, Paper No. 2. In Proceedings of the Second Meeting (pp. 39–64). IAHR.

    Google Scholar 

  98. van Rijn, L. C. (1984). Sediment transport, Part I: Bed load transport. Journal of Hydraulic Engineering, 110(10), 1431–1456.

    Article  Google Scholar 

  99. Hong, R. J., Karim, M. F., & Kennedy, J. F. (1984). Low-temperature effects on flow in sand-bed streams. Journal of Hydraulic Engineering, 110(2), 109–125.

    Article  Google Scholar 

  100. Larsen, P. A. (1973). Hydraulic roughness of ice covers. Journal of the Hydraulics Division, 99(HY1), 111–119.

    Google Scholar 

  101. Sayre, W. W., & Song, G. B. (1979). Effects of ice covers on alluvial channel flow and sediment transport processes (IIHR Rep. No. 218). Iowa City, IA: Iowa Inst. of Hydraulic Research, University of Iowa.

    Google Scholar 

  102. van Rijn, L. C. (1984). Sediment transport, Part II: Suspended load transport. Journal of Hydraulic Engineering, 110(11), 1613–1641.

    Article  Google Scholar 

  103. Smith, B. T., & Ettema, R. (1997). Flow resistance in ice-covered channels. Journal of Hydraulic Engineering, 123(7), 592–599.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hung Tao Shen Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shen, H.T. (2016). River Ice Processes. In: Wang, L., Yang, C., Wang, MH. (eds) Advances in Water Resources Management. Handbook of Environmental Engineering, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-22924-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22924-9_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22923-2

  • Online ISBN: 978-3-319-22924-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics