Skip to main content

Abstract

Mutations for use in breeding sexually and vegetatively propagated crops can be produced using radiation and chemicals. A mutant may become a new cultivar or be used as a parent in further breeding. Understanding mutagenesis, including the genetic changes induced by various mutagens, allows the rational design of mutation programmes: the choice of mutagen, plant material, doses and dose rates; methods for recognizing and selecting desired mutations and for dissociation of chimeric plants; and the population sizes required for success. Examples are presented of breeding programmes using gamma-ray and heavy-ion beam mutagenesis and chemical mutagenesis with ethyl methane sulphonate (EMS). Chemical mutagenesis can be coupled with a high-throughput screen of the mutagenized population to detect point mutations in target DNA sequences (TILLING). Site-directed DNA sequence modification (genome engineering) is possible using engineered nucleases; for example, the CRISPR/Cas9 system for plant genome editing. Insertional mutagenesis and somaclonal variation are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–179

    Article  CAS  PubMed  Google Scholar 

  • Bairu MW, Aremu AO, Van Staden J (2011) Somaclonal variation in plants: causes and detection methods. Plant Growth Regul 63:147–173

    Article  CAS  Google Scholar 

  • Batista R, Saibo N, Lourenco T, Oliveira MM (2008) Microarray analyses reveal that plant mutagenesis may induce more transcriptomic changes than transgene insertion. Proc Natl Acad Sci 105:3640–3645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41–52

    Article  CAS  PubMed  Google Scholar 

  • Caldwell DG, McCallum N, Shaw P, Muehlbauer GJ, Marshall DF, Waugh R (2004) A structured mutant population for forward and reverse genetics in barley (Hordeum vulgare L.). Plant J 40:143–150. doi:10.1111/j.1365-313X.2004.02190.x

    Google Scholar 

  • Cooper JL, Till BJ, Laport RG, Darlow MC, Kleffner JM, Jamai A, El-Mellouki T, Liu S, Ritchie R, Nielsen N, Bilyeu KD, Meksem K, Comai L, Henikoff S (2008) TILLING to detect induced mutations in soybean. BMC Plant Biol 8:9. doi:10.1186/1471-2229-8-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Curtin SJ, Voytas DF, Stupar RM (2012) Genome engineering of crops with designer nucleases. Plant Genome 5:42–50

    Article  CAS  Google Scholar 

  • EFSA (2012b) EFSA Panel on Genetically Modified Organisms (GMO). Scientific opinion addressing the safety assessment of plants developed using Zinc Finger Nuclease 3 and other Site-Directed Nucleases with similar function. EFSA J 10(10): 2943

    Google Scholar 

  • Forster BP, Franckowiak JD, Lundqvist U, Thomas WTB, Leader D, Shaw P, Lyon J, Waugh R (2012) Mutant phenotyping and pre-breeding in barley. In: Shu QY, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI, Wallingford, pp 327–346

    Chapter  Google Scholar 

  • Fu H-W, Li Y-F, Shu Q-Y (2008) A revisit of mutation induction by gamma rays in rice (Oryza sativa L.): implications of microsatellite markers for quality control. Mol Breed 22:281–288. doi:10.1007/s11032-008-9173-7

    Article  CAS  Google Scholar 

  • Gaul H (1960) Critical analysis of the methods for determining the mutation frequency after seed treatment with mutagens. Genet Agrar 12:297–318

    Google Scholar 

  • Gaul H (1964) Mutations in plant breeding. Radiat Bot 4:155–232

    Article  Google Scholar 

  • Greene EA, Codomo CA, Taylor NE, Henikoff JG, Till BJ, Reynolds SH, Enns LC, Burtner C, Johnson JE, Odden AR, Comai L, Henikoff S (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164:731–740

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gustafsson Ã…, MacKey J (1948) The genetical effects of mustard gas substances and neutrons. Hereditas 34:371–386

    Article  CAS  Google Scholar 

  • Jan CC, Vick BA (2006) Registration of seven cytoplasmic male-sterile and four fertility restoration sunflower germplasms. Crop Sci 46:1829–1830

    Article  Google Scholar 

  • Jung K-H, An G, Ronald PC (2008) Towards a better bowl of rice: assigning function to tens of thousands of rice genes. Nat Rev Genet 9:91–101

    CAS  PubMed  Google Scholar 

  • Kazama Y, Hirano T, Saito H, Liu Y, Ohbu S, Hayashi Y, Abe T (2011) Characterization of highly efficient heavy-ion mutagenesis in Arabidopsis thaliana. BMC Plant Biol 11:161. doi:10.1186/1471-2229-11-161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunter B, Bas M, Kantoglu Y, Burak M (2012) Mutation breeding of sweet cherry (Prunus avium L.) var. 0900 Ziraat. In: Shu QY, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI, Wallingford, pp 453–459

    Chapter  Google Scholar 

  • Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392

    Article  CAS  PubMed  Google Scholar 

  • Lusser M, Parisi C, Plan D, Rodríguez-Cerezo E (2012) Deployment of new biotechnologies in plant breeding. Nat Biotechnol 30:231–239

    Article  CAS  PubMed  Google Scholar 

  • Miyao A, Nakagome M, Ohnuma T, Yamagata H, Kanamori H, Katayose Y, Takahashi A, Matsumoto T, Hirochika H (2012) Molecular spectrum of somaclonal variation in regenerated rice revealed by whole-genome sequencing. Plant Cell Physiol 53:256–264. doi:10.1093/pcp/pcr172

    Article  CAS  PubMed  Google Scholar 

  • Morita R, Kusaba M, Iida S, Yamaguchi H, Nishio T, Nishimura M (2009) Molecular characterization of mutations induced by gamma irradiation in rice. Genes Genet Syst 84:361–370

    Article  CAS  PubMed  Google Scholar 

  • Muller HJ (1927) Artificial transmutation of the gene. Science 66:84–87

    Article  CAS  PubMed  Google Scholar 

  • Nilan RA, Sideris EG, Kleinhofs A, Sander C, Konzak CF (1973) Azide-a potent mutagen. Mutat Res 17:142–144

    Article  CAS  Google Scholar 

  • Olsen O, Wang X, von Wettstein D (1993) SA mutagenesis: preferential generation of A-T →G-C transitions in the barley Ant18 gene. Proc Natl Acad Sci 90:8043–8047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao GJN, Patnaik A, Chaudhary D (2012) Genetic improvement of Basmati rice through mutation breeding. In: Shu QY, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI, Wallingford, pp 445–452

    Chapter  Google Scholar 

  • Ryuto H, Fukunishi N, Hayashi Y, Ichida H, Abe T, Kase M, Yano Y (2008) Heavy-ion beam irradiation facility for biological samples in RIKEN. Plant Biotechnol 25:119–122

    Article  Google Scholar 

  • Sato Y, Shirasawa K, Takahashi Y, Nishimura M, Nishio T (2006) Mutant selection of progeny of gamma-ray-irradiated rice by DNA heteroduplex cleavage using Brassica petiole extract. Breed Sci 56:179–183

    Article  CAS  Google Scholar 

  • Shikazono N, Suzuki C, Kitamura S, Watanabe H, Tano S, Tanaka A (2005) Analysis of mutations induced by carbon ions in Arabidopsis thaliana. J Exp Bot 56:587–596

    Article  CAS  PubMed  Google Scholar 

  • Shu QY, Forster BP, Nakagawa H (2012) Plant mutation breeding and biotechnology. CABI, Wallingford, 608p

    Google Scholar 

  • Stadler LJ (1928a) Genetic effects of X rays in maize. Proc Natl Acad Sci U S A 14:69–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stadler LJ (1928b) Mutations in barley induced by X-rays and radium. Science 68:186–187

    Article  CAS  PubMed  Google Scholar 

  • Suprasanna P, Jain SM, Ochatt SJ, Vm K, Predieri S (2012) In: Shu QY, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI, Wallingford, pp 371–385

    Chapter  Google Scholar 

  • Szarejko I (2012) Haploid mutagenesis. In: Shu QY, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI, Wallingford, pp 387–410

    Chapter  Google Scholar 

  • Takagi Y, Anai T, Nakagawa H (2012) Mutation breeding for fatty acid composition in soybean. In: Shu QY, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI, Wallingford, pp 437–444

    Chapter  Google Scholar 

  • Tan S, Bowe SJ (2012) Herbicide-tolerant crops developed from mutations. In: Shu QY, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI, Wallingford, pp 423–436

    Chapter  Google Scholar 

  • Tanaka A, Shikazono N, Hase Y (2010) Studies on biological effects of ion beams on lethality, molecular nature of mutation, mutation rate, and spectrum of mutation phenotype for mutation breeding in higher plants. J Radiat Res 51:223–233

    Article  CAS  PubMed  Google Scholar 

  • Till BJ, Reynolds SH, Weil C, Springer N, Burtner C, Young K, Bowers E, Codomo CA, Enns LC, Odden AR, Greene EA, Comai L, Henikoff S (2004) Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol 4:12. doi:10.1186/1471-2229-4-12

    Article  PubMed  PubMed Central  Google Scholar 

  • Till BJ, Cooper J, Tai TH, Colowit P, Greene EA, Henikoff S, Comai L (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol 7:19. doi:10.1186/1471-2229-7-19

    Article  PubMed  PubMed Central  Google Scholar 

  • Uauy C, Paraiso F, Colasuonno P, Tran RK, Tsai H, Berardi S, Comai L, Dubcovsky J (2009) A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat. BMC Plant Biol 9:115. doi:10.1186/1471-2229-9-115

    Article  PubMed  PubMed Central  Google Scholar 

  • van Harten AM (1998) Mutation breeding theory and applications. Cambridge University Press, Cambridge, 353p

    Google Scholar 

  • Virmani SS, Ilyas-Ahmed M (2007) Rice breeding for sustainable production. In: Kang MS, Priyadarshan PM (eds) Breeding major food staples. Blackwell, Oxford, pp 141–191

    Chapter  Google Scholar 

  • Wang N, Long T, Yao W, Xiong L, Zhang Q, Wu C (2013) Mutant resources for the functional analysis of the rice genome. Mol Plant 6:596–604. doi:10.1093/mp/sss142

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu J-L (2014b) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951. doi:10.1038/nbt.2969

    Article  CAS  PubMed  Google Scholar 

  • Warthmann N, Chen H, Ossowski S, Weigel D, Hervé P (2008) Highly specific gene silencing by artificial miRNAs in rice. PLoS One 3(3), e1829. doi:10.1371/journal.pone.0001829

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bradshaw, J.E. (2016). Mutation Breeding. In: Plant Breeding: Past, Present and Future. Springer, Cham. https://doi.org/10.1007/978-3-319-23285-0_16

Download citation

Publish with us

Policies and ethics