Skip to main content

Abstract

Species of Botrytis are responsible for heavy losses in a number of economically important horticultural and floral crops, the most important being Botrytis cinerea. Most species, except B. cinerea, have a limited host range attacking either monocotyledonous or dicotyledonous plants. Within the genus there are about 28 well-described species but new species continue to be isolated. Most species are opportunist growing as saprophytes on dead and decaying matter but have the ability to become aggressive pathogens under environmental conditions adverse to their hosts. Evidence that some species can be present as endophtyes (non-symptomatic) is increasing, as is evidence that such infections may either become aggressive at a later stage, notably at flowering time, or be transferred non-symptomatically by clonal or seed propagation of the host. Both the sexual and asexual stages are known for B. cinerea. The common method of dispersal of nearly all species is the production of asexual spores (macroconidia, common name conidia) dispersed by wind or water. Survival from one season to the next is generally by the production of sclerotia. Infections are most easily recognized by the appearance of characteristic grey conidial clusters on the surfaces of infected material but early detection, pre-conidiation or in non-symptomatically infected material is difficult; commonly surface sterilization or freezing of material followed by plating out on selective media is used. Detection at the species level requires molecular methods with species-specific probes. Detection and quantification, at the genus level, in extracts from infected tissues, juice and wines, is relatively easy using commercially produced rapid Lateral Flow immunological devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandre H (2010) Development of a qPCR assay for specific quantification of Botrytis cinerea on grapes. FEMS Microbiol Lett 313:81–87

    Article  PubMed  Google Scholar 

  • Amselem JI, Cuomo CA, Van Kan JA et al (2011) Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet 7, e1002230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson JP (1924) Botrytis cinerea in Alaska. Phytopathology 14:152–155

    Google Scholar 

  • Barnes SE, Shaw ME (2003) Infection of commercial hybrid Primula seed by Botrytis cinerea and latent disease spread through the plants. Phytopathology 93:573–578

    Article  CAS  PubMed  Google Scholar 

  • Beever RE, Weeds PL (2004) Taxonomy and genetic variation of Botrytis and Botryotinia. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer Academic Publishers, Dordrecht, pp 30–31

    Google Scholar 

  • Belanger MC, Roger JM, Cartolaro P et al (2011) Autofluorescence of grape berries following Botrytis cinerea infection. Int J Remote Sens 32:3835–3849

    Article  Google Scholar 

  • Binder M (2014) Development of a Botrytis specific immunosensor; towards using PCR species identification. Ph.D. thesis University of Cranfield, UK

    Google Scholar 

  • Blanco C, de los Santos B, Romero F (2006) Relationship between concentrations of Botrytis cinerea conidia in air, environmental conditions, and the incidence of grey Mould in strawberry flowers and fruits. Eur J Plant Pathol 114:415–425

    Article  Google Scholar 

  • Bossi R, Dewey FM (1992) Development of a monoclonal antibody-immunodetection assay for Botrytis cinerea (Pers). Plant Pathol 41:472–482

    Article  CAS  Google Scholar 

  • Brierley WB (1918) Microconidia of Botrytis cinerea. Bull Mis Inf R Bot Gardens Kew 4:129–146

    Google Scholar 

  • Büttner P, Koch F, Voigt K et al (1994) Variations in ploidy among isolates of Botrytis cinerea: implications for genetic and molecular analyses. Curr Gen 25:445–450

    Article  Google Scholar 

  • Campbell MA, Staats M, van Kan AL et al (2013) Repeated loss of an horizontally transferred gene cluster. Mycologia 105:1126–1134

    Article  PubMed  Google Scholar 

  • Capieau K, Stenlid J, Stenstrom E (2004) Potential for biological control of Bortytis cinerea in Pinus sylvestris seedlings. Scand J Forest Res 19:312–319

    Article  Google Scholar 

  • Carisse O, Levasseur A, Van der Heyden H (2012) A new risk indicator for Botrytis leaf blight of onion caused by Botrytis squamosa based infection efficiency of airborne inoculum. Plant Pathol 61:154–1164

    Article  Google Scholar 

  • Celik M, Kalpulov T, Zutahy Y et al (2009) Quantitative and qualitative analysis of Botrytis inoculated table grapes by qPCR and antibodies. Postharvest BiolTech 52:235–239

    Article  CAS  Google Scholar 

  • Chang SW, Kim SK, Hwang BK (2001) Grey mould of daylily (Hemerocallis fulva L.) caused by Botrytis elliptica in Korea. Plant Path J 17:305–307

    Google Scholar 

  • Chilvers MI, du Toit LJ (2006) Detection and identification of Botrytis species associated with neck rot, scape blight, and umbel blight of onion. Online Plant Health Prog. doi:10.1094/PHP-2006-1127-01-DG

    Google Scholar 

  • Chilvers MI, du Toit LJ, Peever TL (2007) A real-time, quantitative PCR seed assay for Botrytis spp. that cause neck rot of onion. Plant Dis 91:599–608

    Article  CAS  Google Scholar 

  • Choquer M, Fournier E, Kunz C et al (2007) Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. FEMS Microbiol Lett 277:1–10

    Article  CAS  PubMed  Google Scholar 

  • Chou MC, Preece TF (2008) The effect of pollen grains on infection caused by Botrytis cinerea FR. Ann Appl Biol 62:11–22

    Article  Google Scholar 

  • Cole L, Dewey FM, Hawes CR (1998) Immunocytochemical studies of the infection mechanisms of Botrytis fabae: penetration and post-penetration processes. New Phytol 139:587–609

    Google Scholar 

  • Dewey FM, Meyer U (2004) Rapid, quantitative tube-immunoassay for on site detection of Botrytis, Aspergillus and Penicillium antigens in grape juice. Anal Chem Acta 513:11–19

    Article  CAS  Google Scholar 

  • Dewey FM, Yohalem D (2004) Detection, quantification and immunolocalisation of Botrytis species. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer Academic Publishers, Dordrecht, pp 181–194

    Google Scholar 

  • Dewey FM, Ebeler SE, Adams DO et al (2000) Quantification of Botrytis in grape juice determined by a monoclonal antibody-based immunoassay. Am J Enol Vitic 51:276–282

    CAS  Google Scholar 

  • Dewey FM, Hill M, De Scenzo R (2008) Quantification of Botrytis and laccase in wine grapes. Am J Enol Vitic 59:47–54

    CAS  Google Scholar 

  • Dewey FM, Steel CC, Gurr SJ (2013) Lateral flow devices to rapidly determine levels of stable Botrytis antigens in table and dessert wines. Am J Enol Vitic 64:291–295

    Article  CAS  Google Scholar 

  • Droby S, Lichter A (2004) Post-harvest Botrytis infection: etiology, development and management. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer Academic Publishers, Dordrecht, pp 349–362

    Google Scholar 

  • Edwards SG, Seddon B (2001) Selective media for the specific isolation and enumeration of Botrytis cinerea conidia. Lett Appl Microbiol 32:63–66

    Article  CAS  PubMed  Google Scholar 

  • Faretra F, Antonacci E (1987) Production of apothecia of Botryotinia fuckeliana (de bary) Whetz. Under controlled environmental conditions. Phytopathol Mediterr 26:29–35

    Google Scholar 

  • Faretra F, Antonacci E, Pollastro S (1988) Sexual behaviour and mating system of Botryotinia fuckeliana, teleomorph of Botrytis cinerea. Microbiology 134:2543–2550

    Article  Google Scholar 

  • Fermaud M, le Menn R (1992) Transmission of Botrytis cinerea to grapes by grape berry moth larvae. Phytopathology 82:1393–1398

    Article  Google Scholar 

  • Fernández-Baldo MA, Messina GA, Sanz MI et al (2009) Screen-printed immunosensor modified with carbon nanotubes in a continuous-flow system for the Botrytis cinerea determination in apple tissues. Talanta 79:681–686

    Article  PubMed  Google Scholar 

  • Fernández-Baldo MA, Messina GA, Sanz MI et al (2010) Microfluidic immunosensor with micromagnetic beads coupled to carbon-based screen-printed electrodes (SPCEs) for determination of Botrytis cinerea in tissue of fruits. J Agric Food Chem 10:11201–11206

    Article  Google Scholar 

  • Fernández-Baldo MA, Fernández JG, Pereira SV et al (2011) Development of an indirect competitive enzyme-linked immunosorbent assay applied to the Botrytis cinerea quantification in tissues of postharvest fruits. BMC Microbiol 11:220. doi:10.1186/1471-2180-11-220

    Article  PubMed  PubMed Central  Google Scholar 

  • Fukumori Y, Nakajima M, Akuts K (2004) Microconidia act the role as spermatia in the sexual reproduction of Botrytis cinerea. J Gen Plant Pathol 70:256–260

    Article  Google Scholar 

  • Furukawa T, Ushimaya K, Kishi K (2005) Botrytis blight of Taiwanese toad lily caused by Botrytis elliptica (Berkley) Cooke. J Gen Plant Pathol 71:95–97

    Article  Google Scholar 

  • Gindro K, Pezet R, Viret O et al (2005) Development of a rapid and highly sensitive direct-PCR assay to detect a single conidium of Botrytis cinerea Pers:Fr in vitro and quiescent forms in planta. Vitis 44:139–142

    CAS  Google Scholar 

  • Grant-Downton RT, Razak B, Terhem MV et al (2014) A novel Botrytis species is associated with a newly emergent foliar disease in cultivated Hemerocallis. Plos One 9, e89272

    Article  PubMed  PubMed Central  Google Scholar 

  • Hill GN, Evans KJ, Beresford RM et al (2013) Near and mid-infrared spectroscopy for the quantification of botrytis bunch rot in white wine grapes. J Near Infrared Spec 21:467–475

    Article  CAS  Google Scholar 

  • Holst-Jensen A, Vaage M, Schumacher T (1998) An approximation to the phylogeny of Sclerotinia and related genera. Nordic J Bot 18:705–719

    Article  Google Scholar 

  • Holtz G, Coertze S, Williamson B (2004) The ecology of Botrytis on plant surfaces. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer Academic Publishers, Dordrecht, pp 9–24

    Google Scholar 

  • Horst RK (2013) Westcott’s plant disease handbook. 5th edn. Chapman and Hall, New York

    Book  Google Scholar 

  • Hsiang T, Chastagner GA (1992) Production and viability of sclerotia from fungicide resistant and sensitive isolates of B. cinerea, B. elliptica and B. tulipae. Plant Pathol 41:600–605

    Article  CAS  Google Scholar 

  • Hsieh T-F, Huang J-W (2001) Leaf disk method for assessment of disease severity of lily leaf blight caused by Bortytis elliptica. Plant Pathol Bull 10:37–44

    Google Scholar 

  • Kecskeméti E, Brathuhn A, Kogel K-H et al (2014) Presence of transposons and mycoviruses in Botrytis cinerea isolates collected from a German grapevine growing region. J Phytopathol 1:582–595

    Article  Google Scholar 

  • Kerssies A (1990) A selective medium for Botrytis cinerea to be used in a spore trap. Neth J Plant Pathol 96:247–250

    Article  Google Scholar 

  • Kerssies A, Van Bosker Z, Frinking HD (1995) Influence of environmental conditions in a glasshouse on conidia of Botrytis cinerea and on post-harvest infection of rose flowers. Eur J Plant Pathol 101:201–216

    Article  Google Scholar 

  • Kessel GT, de Hass BH, Lombaers-Van der Plas CH et al (1999) Quantification of mycelium of Botrytis spp. and the antagonist Ulocladium atrum in necrotic leaf tissue of cyclamen and lily by fluorescence microscopy and image analysis. Phytopathology 89:868–876

    Article  CAS  PubMed  Google Scholar 

  • Khazeli P, Zamanizadeh H, Morid B et al (2010) Morphological and molecular identification of Botrytis cinerea causal agent of grey mould in rose greenhouses in central regions of Iran. Int J Agric Sci Res 1:19–24

    Google Scholar 

  • Leroch M, Plesken C, Weber RW et al (2013) Gray mold populations in German strawberry fields are resistant to multiple fungicides and dominated by a novel clade closely related to Botrytis cinerea. Appl Environ Microbiol 79:159–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Kerrigan J, Chai W et al (2012) Botrytis caroliniana, a new species isolated from blackberry in South Carolina. Mycologia 104:650–658

    Article  CAS  PubMed  Google Scholar 

  • Mehli L, Kjellsen TD, Dewey FM et al (2005) A case study from the interaction of strawberry and Botrytis cinerea highlights the benefits of co-monitoring both partners at genomic and mRNA level. New Phytol 168:465–474

    Article  CAS  PubMed  Google Scholar 

  • Meyer U, Dewey FM (2000) Efficacy of different immunogens for raising monoclonal antibodies to Botrytis cinerea. Mycol Res 104:979–987

    Article  CAS  Google Scholar 

  • Meyer U, Spotts RA, Dewey FM (2000) Detection and quantification of Botrytis cinerea by ELISA in Pear Stems During cold storage. Plant Dis 84:1099–1103

    Article  CAS  Google Scholar 

  • Mirzaei S, Mohammadi-Goltapeh E, Shams-bakhsh M (2007) Taxonomical studies on the genus Botrytis in Iran. J Agric Tech 3:65–76

    Google Scholar 

  • Mittal RK, Singh P, Wang BSP (1987) Botrytis: a hazard to reforestation. Eur J For Pathol 17:369–384

    Article  Google Scholar 

  • Nassr S, Bakarat R (2013) Effect of factors on conidium germination of Botrytis cinerea in vivo. Int J Plant Soil Sci 2:41–54

    Article  Google Scholar 

  • Nielsen K, Yohohalem DS (2001) Universally primed polymerase chain reaction alleles and internal transcribed spacer restriction fragment length polymorphisms distinguish two subgroups in Botrytis aclada distinct from B. bysoidea. Phytopathology 91:527–533

    Article  CAS  PubMed  Google Scholar 

  • Nielsen K, Yohalem DS, Jensen DF (2002) PCR Detection and RFLP differentiation of Botrytis species associated with neck rot of onion. Plant Dis 86:682–686

    Article  CAS  Google Scholar 

  • O’Gorman DT, Sholberg PL, Stokes SC et al (2008) DNA sequence analysis of herbarium specimens facilitates the revival of Botrytis mali, a postharvest pathogen of apple. Mycologia 100:227–235

    Article  PubMed  Google Scholar 

  • Phillips DJ, Margosan DA, Mackey BE (1987) Size, nuclear number, and aggressiveness of Botrytis cinerea spores produced on media of varied glucose concentrations. Phytopathology 77:1606–1608

    Article  Google Scholar 

  • Richards TA, Soanes DM, Foster PG et al (2009) Phylogenomic analysis demonstrates a pattern of rare and ancient horizontal gene transfer between plants and fungi. Plant Cell 21:1897–1911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rigotti S, Viret O, Gindro K (2006) Two new primers highly specific for the detection of Botrytis cinerea Pers.: Fr. Phytopathol Mediterr 45:253–260

    CAS  Google Scholar 

  • Rousseaux S, Diguta CF, Radoï-Matei F et al (2014) Non-Botrytis grape-rotting fungi responsible for earthy and moldy off-flavors and mycotoxins. Food Microbiol 38:104–121

    Article  CAS  PubMed  Google Scholar 

  • Saito S, Suzuki S, Takavanagi T (2009) Nested PCR-RFLP is a high-speed method to detect fungicide-resistant Botrytis cinerea at an early growth stage on grapes. Pest Manag Sci 65:197–204

    Article  CAS  PubMed  Google Scholar 

  • Saito S, Dunne KJ, Evans KJ et al (2013) Optimisation of techniques for quantification of Botrytis cinerea in grape berries and receptacles by quantitative polymerase chain reaction. Aust J Grape Wine Res 19:68–73

    Article  Google Scholar 

  • Salinas J, Schots A (1994) Monoclonal antibodies-based immunofluorescence test for the detection of conidia of Botrytis cinerea on cut flowers. Phytopathology 84:351–356

    Article  Google Scholar 

  • Salinas J, Verhoff K (1995) Microscopical studies of the infection of gerbera flowers by Botrytis cinerea. Eur J Plant Pathol 101:377–386

    Article  Google Scholar 

  • Sanzani SM, Schena L, De Cicco V et al (2012) Early detection of Botrytis cinerea latent infections as a tool to improve postharvest quality of table grapes. Postharvest Biol Tech 68:64–71

    Article  Google Scholar 

  • SAPS ELISA kit for Botrytis (2000) Science and plants for schools. Homerton College, Cambridge

    Google Scholar 

  • Shipunov A, Newcombe G, Raghavendra AKH et al (2008) Hidden diversity of endophytic fungi in an invasive plant. Am J Bot 95:1096–1108

    Article  PubMed  Google Scholar 

  • Sivertsen HK, Dewey FM, Heymann H (2005) Relationship between sensory descriptive analysis and levels of Botrytis antigens in dessert wines. Am J Enol Vitic 56:330–335

    Google Scholar 

  • Sowley ENK, Dewey FM, Shaw MW (2010) Persistent, symptomless, systemic and seed-borne infection of lettuce by Botrytis cinerea. Eur J Plant Pathol 126:61–71

    Article  Google Scholar 

  • Staats M, Van Kan JA (2012) Genome update of Botrytis cinerea strains B05.10 and T4. Euk Cell 11:1413–1414

    Article  CAS  Google Scholar 

  • Staats M, Van Baarlen P, Van Kan JA (2005) Molecular phylogeny of the plant pathogenic genus Botrytis and the evolution of host specificity. Mol Biol Evol 22:333–346

    Article  CAS  PubMed  Google Scholar 

  • Staats M, Van Baarlen P, Schouten A et al (2007) Positive selection in phytotoxic protein encoding genes of Botrytis species. Fungal Genet Biol 44:52–63

    Article  CAS  PubMed  Google Scholar 

  • Suarez MB, Walsh K, Boonham N et al (2005) Development of real-time (TaqMan) assays for the detection and quantification of Botrytis cinerea in planta. Plant Physiol Biochem 43:890–899

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson JA, Dickinson MJ, Boonham N (2010) Detection of Botrytis cinerea by loop-mediated isothermal amplification. Lett Appl Microbiol 51:650–657

    Article  CAS  PubMed  Google Scholar 

  • Tompkins CM, Hansen HN (1950) Flower blight of Stephanotis floribunda, caused by Botrytis elliptica, and its control. Phytopathology 40:780–781

    Google Scholar 

  • Urbasch I (1983) On the genesis and germination of chlamydospores of Botrytis cinerea. J Phytopathol 108:54–60

    Article  Google Scholar 

  • Urruty L, Audebert J, Snakkers G et al (2010) Relevance of an immunoassay test for rapid detection of Botrytis cinerea in ‘Ugni Blanc’ musts and wines. Qud Vitic Rnol Univ Torino 31:2009–2010

    Google Scholar 

  • Van den Driessche T, Keulemans J, Geeraerd A et al (2012) Evaluation of fast volatile analysis for detection of Botrytis cinerea infections in strawberry. Food Microbiol 32:406–414

    Article  Google Scholar 

  • Van der Heyden H, Dutilleul P, Brodeur L et al (2014) Spatial distribution of single nucleotide polymorphisms related to fungicide resistance and implications for sampling. Phytopathology 104:604–613

    Article  PubMed  Google Scholar 

  • Walcott RR, Gitaitis RD, Langton DB (2004) Detection of Botrytis aclada in onion seed using magnetic capture hybridization and polymerase chain reaction. Seed Sci Tech 32:425–438

    Article  Google Scholar 

  • Walker AS, Gautier AL, Confais J et al (2011) Botrytis pseudocinerea, a new cryptic species causing gray mold in French vineyards in sympatry with Botrytis cinerea. Phytopathology 101:1433–1445

    Article  PubMed  Google Scholar 

  • Yohalem DS, Nielsen K, Nicolaisen M (2003) Taxonomic and nomenclatural clarification of the onion neck rotting Botrytis species. Mycotaxon 85:175–182

    Google Scholar 

  • Zhang J, Wu M-D, Li G-Q et al (2010a) Botrytis fabiopsis, a new species causing chocolate spot of broad bean in central China. Mycologia 102:1114–1126

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhang L, Li G-Q et al (2010b) Botrytis sinoallii: a new species of the grey mold pathogen of Allium crops in China. Mycoscience 51:421–431

    Article  Google Scholar 

  • Zhao J, Zhou L, Wang J, et al (2010) Endophytic fungi for producing bioactive compounds originally from their host plants. In: A Mendez-Vilas (ed) Current research, technology and evolution topics in microbiology and microbial biotechnology, vol I Formatex, pp 567–576

    Google Scholar 

  • Zhou X, Zhu F, Liu L et al (2010) A review: recent advances and future prospects of taxol-producing endophytic fungi. Appl Microbiol Biotechnol 86:1707–1717

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Zhang J, Wang X et al (2014) Morphological and phylogenetic identification of Botrytis sinoviticola, a novel cryptic species causing gray mold disease on table grapes (Vitis vinifera) in China. Mycologia 106:43–56

    Article  CAS  PubMed  Google Scholar 

  • Zhu B, Zhou Q, Xie G et al (2012) Interkingdom gene transfer may contribute to the evolution of phytopathogenicity in Botrytis cinerea. Evol Bioinform Online 8:105–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuccaro A, Schoch CL, Spatafora JW et al (2008) Detection and identification of fungi intimately associated with the brown seaweed Fucus serratus. Appl Environ Microbiol 74:931–941

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frances M. Dewey (Molly) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

(Molly), F.M.D., Grant-Downton, R. (2016). Botrytis-Biology, Detection and Quantification. In: Fillinger, S., Elad, Y. (eds) Botrytis – the Fungus, the Pathogen and its Management in Agricultural Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-23371-0_2

Download citation

Publish with us

Policies and ethics