Skip to main content

Abstract

Methyl jasmonate (MeJA), as a plant regulator, is involved in the regulation of numerous vital processes. In this chapter, we mainly introduce the functions of MeJA in inducing the resistance of fruits against fungal pathogens, enhancing tolerance of fruit to low temperature stress, keeping the quality of harvested fruits, and improving the biocontrol efficiency of antagonistic yeasts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aghdam, M. S., & Bodbodak, S. (2013). Physiological and biochemical mechanisms regulating chilling tolerance in fruits and vegetables under postharvest salicylates and jasmonates treatments. Scientia Horticulturae, 156, 73–85.

    Article  CAS  Google Scholar 

  • Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373–399.

    Article  CAS  Google Scholar 

  • Buta, I. T., & Moline, H. E. (1998). Methyl jasmonate extends shelf life and reduces microbial contamination of fresh-cut celery and peppers. Journal of Agricultural and Food Chemistry, 46, 1253–1256.

    Article  CAS  Google Scholar 

  • Cai, Y., Cao, S., Yang, Z., & Zheng, Y. (2011). MeJA regulates enzymes involved in ascorbic acid and glutathione metabolism and improves chilling tolerance in loquat fruit. Postharvest Biology and Technology, 59, 324–326.

    Article  CAS  Google Scholar 

  • Campo, S., Carrascal, M., Coca, M., Abian, J., & Segundo, B. S. (2004). The defense response of germinating maize embryos against fungal infection: A proteomics approach. Proteomics, 4, 383–396.

    Article  CAS  Google Scholar 

  • Cao, S., Cai, Y., Yang, Z., Joyce, D. C., & Zheng, Y. (2014). Effect of MeJA treatment on polyamine, energy status and anthracnose rot of loquat fruit. Food Chemistry, 145, 86–89.

    Article  CAS  Google Scholar 

  • Cao, S., Yang, Z., Cai, Y., & Zheng, Y. (2012). MeJA induces chilling tolerance in loquat fruit by regulating proline and γ-aminobutyric acid contents. Food Chemistry, 133, 1466–1470.

    Article  CAS  Google Scholar 

  • Cao, S., Zheng, Y., Wang, K., Rui, H., & Tang, S. (2010). Effect of methyl jasmonate on cell wall modification of loquat fruit in relation to chilling injury after harvest. Food Chemistry, 118, 641–647.

    Article  CAS  Google Scholar 

  • Cao, S., Zheng, Y., Yang, Z., Tang, S., Jin, P., Wang, K., et al. (2008). Effect of methyl jasmonate on the inhibition of Colletotrichum acutatum infection in loquat fruit and the possible mechanisms. Postharvest Biology and Technology, 49, 301–307.

    Article  CAS  Google Scholar 

  • Cao, S., Zheng, Y., Yang, Z., Rui, H., & Wang, K. (2009a). Effect of methyl jasmonate on quality and antioxidant activity of postharvest loquat fruit. Journal of the Science of Food and Agriculture, 89, 2064–2070.

    Article  CAS  Google Scholar 

  • Cao, S., Zheng, Y., Wang, K., Jin, P., & Rui, H. (2009b). Methyl jasmonate reduces chilling injury and enhances antioxidant enzyme activity in postharvest loquat fruit. Food Chemistry, 115, 1458–1463.

    Article  CAS  Google Scholar 

  • Chan, Z. L., & Tian, S. P. (2005). Interaction of antagonistic yeasts against postharvest pathogens of apple fruit and possible mode of action. Postharvest Biology and Technology, 36, 215–223.

    Article  CAS  Google Scholar 

  • Chanjirakul, K., Wang, S. Y., Wang, C. Y., & Siriphanich, J. (2006). Effect of natural volatile compounds on antioxidant capacity and antioxidant enzymes in raspberries. Postharvest Biology and Technology, 40, 106–115.

    Article  CAS  Google Scholar 

  • Chanjirakul, K., Wang, S. Y., Wang, C. Y., & Siriphanich, J. (2007). Natural volatile treatments increase free-radical scavenging capacity of straw berries and black berries. Journal of the Science of Food and Agriculture, 87, 1463–1472.

    Article  CAS  Google Scholar 

  • Creelman, R., & Mullet, J. E. (1997). Biosynthesis and action of jasmonates in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 355–381.

    Article  CAS  Google Scholar 

  • Creelman, R. A., Tierney, M. L., & Mullet, J. E. (1992). Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression. Proceedings of the National Academy of Sciences of the USA, 89, 4938–4941.

    Article  CAS  Google Scholar 

  • Ding, C. K., Wang, C. Y., Gross, K. C., & Smith, D. L. (2001). Reduction of chilling injury and transcript accumulation of heat shock proteins in tomato fruit by methyl jasmonate and methyl salicylate. Plant Science, 161, 1153–1159.

    Article  CAS  Google Scholar 

  • Ding, C. K., Wang, C. Y., Gross, K. C., & Smith, D. L. (2002). Jasmonate and salicylate induce the expression of pathogenesis-related-protein genes and increase resistance to chilling injury in tomato fruit. Planta, 214, 895–901.

    Article  CAS  Google Scholar 

  • Droby, S., Porat, R., Cohen, L., Weiss, B., Shapio, B., Philosoph-Hadas, S., et al. (1999). Suppressing green mold decay in grapefruit with postharvest jasmonate application. Journal of the American Society for Horticultural Science, 124, 184–188.

    CAS  Google Scholar 

  • Ebrahimi, L., Etebarian, H. R., Aminian, H., & Sahebani, N. (2013). Effect of Metschnikowia pulcherrima and methyl jasmonate on apple blue mold disease and the possible mechanisms involved. Phytoparasitica, 41, 515–519.

    Article  CAS  Google Scholar 

  • Fan, X., & Mattheis, J. P. (1999). Impact of 1-methylcyclopropene and methyl jasmonate on apple volatile production. Journal of Agricultural and Food Chemistry, 47, 2847–2853.

    Article  CAS  Google Scholar 

  • Fan, X., Mattheis, J. P., Fellman, J. K., & Patterson, M. E. (1997). Effect of methyl jasmonate on ethylene and volatile production by Summerred apples depends on fruit developmental stage. Journal of Agricultural and Food Chemistry, 45, 208–211.

    Article  CAS  Google Scholar 

  • Fan, X., Mattheis, J. P., & Fellman, J. K. (1998). Responses of apple to postharvest jasmonate treatments. Journal of the American Society for Horticultural Science, 123, 421–425.

    CAS  Google Scholar 

  • Fan, Q., & Tian, S. P. (2001). Postharvest biological control of grey mold and blue mold on apple by Cryptococcus albidus (Saito) Skinner. Postharvest Biology and Technology, 21, 341–350.

    Article  Google Scholar 

  • Fung, R. W. M., Wang, C. Y., Smith, D. L., Gross, K. C., Tao, Y., & Tian, M. (2006). Characterization of alternative oxidase (AOX) gene expression in response to methyl salicylate and methyl jasmonate pre-treatment and low temperature in tomatoes. Journal of Plant Physiology, 163, 1049–1060.

    Article  CAS  Google Scholar 

  • González-Aguilar, G. A., Buta, J. G., & Wang, C. Y. (2001). Methyl jasmonate reduces chilling injury symptoms and enhances colour development of ‘Kent’ mangoes. Journal of the Science of Food and Agriculture, 81, 1244–1249.

    Article  Google Scholar 

  • González-Aguilar, G. A., Buta, J. G., & Wang, C. Y. (2003). Methyl jasmonate and modified atmosphere packaging (MAP) reduce decay and maintain postharvest quality of papaya ‘Sunrise’. Postharvest Biology and Technology, 28, 361–370.

    Article  Google Scholar 

  • González-Aguilar, G. A., Fortiz, J., & Wang, C. Y. (2000). Methyl jasmonate reduces chilling injury and maintains postharvest quality of mango fruit. Journal of Agriculture and Food Chemistry, 48, 515–519.

    Article  Google Scholar 

  • González-Aguilar, G. A., Tiznado-Hernandez, M. E., Zavaleta-Gatica, R., & Martınez-Téllez, M. A. (2004). Methyl jasmonate treatments reduce chilling injury and activate the defense response of guava fruits. Biochemical and Biophysical Research Communications, 313, 694–701.

    Article  Google Scholar 

  • Guo, J., Fang, W., Lu, H., Zhu, R., Lu, L., Zheng, X., et al. (2014). Inhibition of green mold disease in mandarins by preventive applications of methyl jasmonate and antagonistic yeast Cryptococcus laurentii. Postharvest Biology and Technology, 88, 72–78.

    Article  CAS  Google Scholar 

  • Han, J., Tian, S. P., Meng, X. H., & Ding, Z. S. (2006). Response of physiological metabolism and cell structures of mango fruit to exogenous methyl salicylate under low temperature stress. Physiologia Plantarum, 128, 125–133.

    Article  CAS  Google Scholar 

  • Janisiewicz, W. J., & Korsten, L. (2002). Biological control of postharvest diseases of fruit. Annual Review of Phytopathology, 40, 411–441.

    Article  CAS  Google Scholar 

  • Jimenez, A., Kular, B., Creissen, G., Firmin, J., Robinson, S., Verhoeyen, M. N., & Mullineaux, P. (2002). Changes in oxidative processes and components of the antioxidant system during tomato fruit ripening. Planta, 214, 751–758.

    Article  CAS  Google Scholar 

  • Jin, P., Tang, S., Zheng, Y., Rui, H., & Wang, C. Y. (2009). Enhancing disease resistance in peach fruit with methyl jasmonate. Journal of Science and Food Agriculture, 89, 802–808.

    Article  CAS  Google Scholar 

  • Jin, P., Zhu, H., Wang, J., Chen, J., Wang, X., & Zheng, Y. (2013). Effect of methyl jasmonate on energy metabolism in peach fruit during chilling stress. Journal of the Science of Food and Agriculture, 93, 1827–1832.

    Article  CAS  Google Scholar 

  • Karaman, S., Ozturk, B., Genc, N., & Celik, S. M. (2013). Effect of preharvest application of methyl jasmonate on fruit quality of plum (Prunus salicina Lindell cv. “Fortune”) at harvest and during cold storage. Journal of Food Processing and Preservation, 37, 1049–1059.

    Article  CAS  Google Scholar 

  • Kondo, S., Setha, S., Rudell, D. R., Buchanan, D. A., & Mattheis, J. P. (2005). Aroma volatile biosynthesis in apples affected by 1-MCP and methyl jasmonate. Postharvest Biology and Technology, 36, 61–68.

    Article  CAS  Google Scholar 

  • Lalel, H. J. D., Singh, Z., & Tan, S. C. (2003). The role of ethylene in mango fruit aroma volatiles biosynthesis. Journal of Horticultural Science and Biotechnology, 78, 485–496.

    CAS  Google Scholar 

  • Li, B. Q., & Tian, S. P. (2006). Effects of trehalose on stress tolerance and biocontrol efficacy of Cryptococcus laurentii. Journal of Applied Microbiology, 100, 854–861.

    Article  CAS  Google Scholar 

  • Li, B. Q., Zhang, C. F., Cao, B. H., Wang, W. H., Qin, G. Z., & Tian, S. P. (2012). Brassinosteroids enhance cold stress tolerance in fruit by regulating plasma membrane proteins and lipids. Amino Acids, 43, 2469–2480.

    Article  CAS  Google Scholar 

  • Marangoni, A. G., Palma, T., & Stanley, D. W. (1996). Membrane effects in postharvest physiology. Postharvest Biology and Technology, 7, 193–217.

    Article  Google Scholar 

  • Martínez-Esplá, A., Zapata, P. J., Castillo, S., Guillén, F., Martínez-Romero, D., Valero, D., et al. (2014). Preharvest application of methyl jasmonate (MeJA) in two plum cultivars. 1. Improvement of fruit growth and quality attributes at harvest. Postharvest Biology and Technology, 98, 98–105.

    Article  Google Scholar 

  • Meng, X. H., Han, J., Wang, Q., & Tian, S. P. (2009). Changes in physiology and quality of peach fruit treated by methyl jasmonate under low temperature stress. Food Chemistry, 106, 501–508.

    Article  Google Scholar 

  • Meng, X. H., Qin, G. Z., & Tian, S. P. (2010). Influences of preharvest spraying Cryptococcus laurentii combined with postharvest chitosan coating on postharvest diseases and quality of table grapes in storage. LWT - Food Science and Technology, 43, 596–601.

    Article  CAS  Google Scholar 

  • Meng, X. H., & Tian, S. P. (2009). Effects of preharvest application of antagonistic yeast combined with chitosan on decay and quality of harvested table grape fruit. Journal of the Science of Food and Agriculture, 89, 1838–1842.

    Article  CAS  Google Scholar 

  • Møller, I. M. (2001). Plant mitochondria and oxidative stress: Electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annual Review of Plant Biology, 52, 561–591.

    Article  Google Scholar 

  • Noctor, G., & Foyer, C. H. (1998). Ascorbate and glutathione: Keeping active oxygen under control. Annual Review of Plant Biology, 49, 249–279.

    Article  CAS  Google Scholar 

  • Olias, J. M., Sanz, L. C., Rios, J. J., & Perez, A. G. (1992). Inhibitory effect of methyl jasmonate on the volatile ester-forming enzyme system in Golden Delicious apples. Journal of Agricultural and Food Chemistry, 40, 266–270.

    Article  CAS  Google Scholar 

  • Perez, A. G., Sanz, C., Richardson, D. G., & Olias, J. M. (1993). Methyl jasmonate vapor promotes β-carotene synthesis and chlorophyll degradation in Golden Delicious apple peel. Journal of Plant Growth Regulation, 12, 163–167.

    Article  CAS  Google Scholar 

  • Qin, Q. Z., Tian, S. P., Xu, Y., & Wan, Y. K. (2003). Enhancement of biocontrol efficacy of antagonistic yeasts by salicylic acid in sweet cherry fruit. Physiological and Molecular Plant Pathology, 62, 147–154.

    Article  CAS  Google Scholar 

  • Rudell, D. R., Mattheis, J. P., Fan, X., & Fellman, J. K. (2002). Methyl jasmonate enhances anthocyanin accumulation and modifies production of phenolics and pigments in ‘Fuji’ apples. Journal of the American Society for Horticultural Science, 127, 435–441.

    CAS  Google Scholar 

  • Saltveit, M. E., & Morris, L. L. (1990). Overview on chilling injury of horticultural crops. In C. Y. Wang (Ed.), Chilling injury of horticultural crops (pp. 3–15). Boca Raton: CRC Press.

    Google Scholar 

  • Saniewski, M., & Czapski, J. (1983). The effect of methyl jasmonate on lycopene and β-carotene accumulation in ripening red tomatoes. Experientia, 39, 1373–1374.

    Article  CAS  Google Scholar 

  • Shafiq, M., Singh, Z., & Khan, A. S. (2013). Time of methyl jasmonate application influences the development of ‘Cripps Pink’ apple fruit colour. Journal of the Science of Food and Agriculture, 93, 611–618.

    Article  CAS  Google Scholar 

  • Shang, H., Cao, S., Yang, Z., Cai, Y., & Zheng, Y. (2011). Effect of exogenous gamma-aminobutyric acid treatment on proline accumulation and chilling injury in peach fruit after long-term cold storage. Journal of Agricultural and Food Chemistry, 59, 1264–1268.

    Article  CAS  Google Scholar 

  • Sharma, R. R., Singh, D., & Singh, R. (2009). Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biological Control, 50, 205–221.

    Article  Google Scholar 

  • Shewfelt, R. L., & Del Rosario, B. A. (2000). The role of lipid peroxidation in storage disorders of fresh fruit and vegetables. HortScience, 35, 575–579.

    CAS  Google Scholar 

  • Song, J., & Bangerth, F. (1996). The effect of harvest date on aroma compound production from ‘Golden Delicious’ apple fruit and relationship to respiration and ethylene production. Postharvest Biology and Technology, 8, 259–269.

    Article  CAS  Google Scholar 

  • Suzuki, N., & Mittler, R. (2006). Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction. Physiologia Plantarum, 126, 45–51.

    Article  CAS  Google Scholar 

  • Tian, S. P., & Chan, Z. L. (2004). Potential of induced resistance in postharvest diseases control of fruits and vegetables. Acta Phytopathologica Sinica, 34, 385–394.

    Google Scholar 

  • Tian, S. P., Fan, Q., Xu, Y., & Jiang, A. L. (2002). Effects of calcium on biocontrol activity of yeast antagonists against postharvest fungal pathogen. Plant Pathology, 51, 352–358.

    Article  Google Scholar 

  • Tian, S. P., Qin, G. Z., & Li, B. Q. (2013). Reactive oxygen species involved in regulating fruit senescence and fungal pathogenicity. Plant Molecular Biology, 82, 593–602.

    Article  CAS  Google Scholar 

  • Tzortzakis, N. G. (2007). Methyl jasmonate-induced suppression of anthracnose rot in tomato fruit. Crop Protection, 26, 1507–1513.

    Article  CAS  Google Scholar 

  • Walters, D. R. (2003). Resistance to plant pathogens: Possible roles for free polyamines and polyamine catabolism. New Phytologist, 159, 109–115.

    Article  CAS  Google Scholar 

  • Walters, D., Walsh, D., Newton, A., & Lyon, G. (2005). Induced resistance for plant disease control: Maximizing the efficacy of resistance elicitors. Phytopathology, 95, 1368–1373.

    Article  CAS  Google Scholar 

  • Wang, C. Y. (1998). Methyl jasmonate inhibits postharvest sprouting and improves storage quality of radishes. Postharvest Biological and Technology, 14, 179–183.

    Article  Google Scholar 

  • Wang, C. Y., & Buta, J. G. (2003). Maintaining quality of fresh-cut kiwifruit with volatile compounds. Postharvest Biological and Technology, 28, 181–186.

    Article  CAS  Google Scholar 

  • Wang, K., Jin, P., Cao, S., Shang, H., Yang, Z., & Zheng, Y. (2009). Methyl jasmonate reduces decay and enhances antioxidant capacity in Chinese bayberries. Journal of Agriculture and Food Chemistry, 57, 5809–5815.

    Article  CAS  Google Scholar 

  • Wang, L., Jin, P., Wang, J., Jiang, L. L., Shan, T. M., & Zheng, Y. H. (2015). Methyl jasmonate primed defense responses against Penicillium expansum in sweet cherry fruit. Plant Molecular Biology Reporter. doi:10.1007/s11105-014-0844-8.

    Google Scholar 

  • Wang, S. Y., & Zheng, W. (2005). Preharvest application of methyl jasmonate increases fruit quality and antioxidant capacity in raspberries. International Journal of Food Science and Technology, 40, 187–195.

    Article  CAS  Google Scholar 

  • Wang, K. T., Zheng, Y. H., Shang, H. T., Jin, P., & Rui, H. J. (2011). Study on improved biocontrol of Pichia membranifaciens for control of green mold decay on Chinese bayberry fruit by methyl jasmonate. Food and Fermentation Industries, 37, 11–16.

    Google Scholar 

  • Yao, H. J., & Tian, S. P. (2005a). Effects of pre- and postharvest application of SA or MeJA on inducing disease resistance of sweet cherry fruit in storage. Postharvest Biology and Technology, 35, 253–262.

    Article  CAS  Google Scholar 

  • Yao, H. J., & Tian, S. P. (2005b). Effects of a biocontrol agent and methyl jasmonate on postharvest diseases of peach fruit and the possible mechanisms involved. Journal of Applied Microbiology, 98, 941–950.

    Article  CAS  Google Scholar 

  • Zhang, H. Y., Ma, L. C., Turner, M., Xu, H. X., Dong, Y., & Jiang, S. (2009). Methyl jasmonate enhances biocontrol efficacy of Rhodotorula glutinis to postharvest blue mold decay of pears. Food Chemistry, 117, 621–626.

    Article  CAS  Google Scholar 

  • Zhang, X., Shen, L., Li, F., Meng, D., & Sheng, J. (2011). Methyl salicylate-induced arginine catabolism is associated with up-regulation of polyamine and nitric oxide levels and improves chilling tolerance in cherry tomato fruit. Journal of Agricultural and Food Chemistry, 59, 9351–9357.

    Article  CAS  Google Scholar 

  • Zhang, C. F., & Tian, S. P. (2010). Peach fruit acquired the tolerance to low temperature stress by accumulation of linolenic acid and N-acylphosphatidylethanolamine in plasma membrane. Food Chemistry, 120, 864–872.

    Article  CAS  Google Scholar 

  • Zhang, X. H., Shen, L., Li, F. J., Zhang, Y. X., Meng, D. M., & Sheng, J. P. (2010a). Up-regulating arginase contributes to amelioration of chilling stress and the antioxidant system in cherry tomato fruits. Journal of Science of Food and Agriculture, 90, 2195–2202.

    Article  CAS  Google Scholar 

  • Zhang, Z. H., Nie, Y. F., He, L., Li, Y. F., & Wang, Z. Z. (2010b). Resistance-related defense enzymes and endogenous salicylic acid induced by exogenous methyl jasmonate in rice against blast disease. Acta Phytopathologica Sinica, 40, 395–403.

    Google Scholar 

  • Zheng, Y. H., Raymond, W. M. F., Wang, S. Y., & Wang, C. Y. (2008). Transcript levels of antioxidative genes and oxygen radical scavenging enzyme activities in chilled zucchini squash in response to super atmospheric oxygen. Postharvest Biology and Technology, 47, 151–158.

    Article  CAS  Google Scholar 

  • Zhu, Z., & Tian, S. P. (2012). Resistant responses of tomato fruit treated by exogenous methyl jasmonate to Botrytis cinerea infection. Scientia Horticulturea, 142, 38–43.

    Article  CAS  Google Scholar 

  • Zhu, Z., Zhang, Z. Q., Qin, G. Z., & Tian, S. P. (2010). Effects of brassinosteroids on ripening and disease resistance of jujube fruit in storage. Postharvest Biology and Technology, 56, 50–55.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiping Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tian, S., Zhang, Z. (2016). Methyl Jasmonate. In: Siddiqui, M., Ayala Zavala, J., Hwang, CA. (eds) Postharvest Management Approaches for Maintaining Quality of Fresh Produce. Springer, Cham. https://doi.org/10.1007/978-3-319-23582-0_6

Download citation

Publish with us

Policies and ethics