Skip to main content

Abstract

Nowadays, packaging is one of the most diffused methods to control and preserve food against adverse environmental conditions from manufacturing and during their entire shelf life. In last decades, different functional and active packaging systems were developed, with meliorated characteristics and properties, as answer to consumer requirements. Aim of this chapter is to briefly introduce some of the most used and interesting carbohydrates which can be used in the formulation and production of more protective, antioxidant, natural, and cheap materials for food packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdou, E. S., Nagy, K. S. A., & Elsabee, M. Z. (2007). Extraction and characterization of chitin and chitosan from local sources. Bioresource Technology, 99, 1359–1367.

    Article  CAS  Google Scholar 

  • Acuña, L., Morero, R., & Bellomio, A. (2011). Development of wide-spectrum hybrid bacteriocins for food biopreservation. Food and Bioprocess Technology, 4, 1029–1049.

    Article  Google Scholar 

  • Agheli, N., Kabir, M., Berni-Canani, S., et al. (1998). Plasma lipids and fatty acid synthase activity are regulated by short-chain fructooligosaccharides in sucrose-fed insulin-resistant rats. Journal of Nutrition, 128, 1283–1288.

    CAS  Google Scholar 

  • Alboofetileh, M., Rezaei, M., Hosseini, H., & Abdollah, M. (2014). Antimicrobial activity of alginate/clay nanocomposite films enriched with essential oils against three common foodborne pathogens. Food Control, 36, 1–7.

    Article  CAS  Google Scholar 

  • Antunes, M., Gago, C., Cavaco, A., & Miguel, M. G. (2012). Edible coatings enriched with essential oils and their compounds for fresh and fresh-cut fruit. Recent Patents on Food, Nutrition and Agriculture, 4, 114–122.

    Article  CAS  Google Scholar 

  • Atef, M., Rezaei, M., & Behrooz, R. (2015). Characterization of physical, mechanical, and antibacterial properties of agar-cellulose bionanocomposite films incorporated with savory essential oil. Food Hydrocolloids, 45, 150–157.

    Article  CAS  Google Scholar 

  • Azarakhsh, N., Osman, A., Ghazali, H. M., Tan, C. P., & Mohd Adzahan, N. (2012). Optimization of alginate and gellan-based edible coating formulations for fresh-cut pineapples. International Food Research Journal, 19, 279–285.

    CAS  Google Scholar 

  • Barreteau, H., Delattre, C., & Michaud, P. (2006). Production of oligosaccharides as promising new food additive generation. Food Technology and Biotechnology, 44, 323–333.

    CAS  Google Scholar 

  • Bautista-Banos, S., Hernandez-Lauzardo, A. N., Velazquez-del Valle, M. G., Hernandez-Lopez, M., Ait Barka, E., & Bosquez-Molina, E. (2006). Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. Crop Protection Review, 25, 108–118.

    Article  CAS  Google Scholar 

  • Beck-Candanedo, S., Roman, M., & Gray, D. G. (2005). Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules, 6, 1048–1054.

    Article  CAS  Google Scholar 

  • Beverlya, R. L., Janes, M. E., Prinyawiwatkula, W., & No, H. K. (2008). Edible chitosan films on ready-to-eat roast beef for the control of Listeria monocytogenes. Food Microbiology, 25, 534–537.

    Article  CAS  Google Scholar 

  • Bledzki, A. K., & Gassan, J. (1999). Composites reinforced with cellulose based fibres. Progress in Polymer Science, 24, 221–274.

    Article  CAS  Google Scholar 

  • Cagri, A., Ustunol, Z., & Ryser, E. T. (2004). Antimicrobial edible films and coatings. Journal of Food Protection, 67, 833–848.

    CAS  Google Scholar 

  • Chen, J., Liang, R., Liu, W., et al. (2013). Pectic-oligosaccharides prepared by dynamic high-pressure microfluidization and their in vitro fermentation properties. Carbohydrate Polymers, 91, 175–182.

    Article  CAS  Google Scholar 

  • Coelho, E., Rocha, M. A. M., Saraiva, J. A., & Coimbra, M. A. (2014). Microwave superheated water and dilute alkali extraction of brewers’ spent grain arabinoxylans and arabinoxylo-oligosaccharides. Carbohydrate Polymers, 99, 415–422.

    Article  CAS  Google Scholar 

  • Coma, V., Deschamps, A., & Martial-Gros, A. (2003). Bioactive packaging materials from edible chitosan polymer – antimicrobial activity assessment on dairy‐related contaminants. Journal of Food Science, 68, 2788–2792.

    Article  CAS  Google Scholar 

  • Coma, V., Martial-Gros, A., Garreau, S., Copinet, A., Salin, F., & Deschamps, A. (2002). Edible antimicrobial films based on chitosan matrix. Journal of Food Science, 67, 1162–1169.

    Article  CAS  Google Scholar 

  • Darder, M., Aranda, P., & Ruiz-Hitzky, E. (2007). Bionanocomposites: A new concept of ecological, bioinspired, and functional hybrid materials. Advanced Materials, 19, 1309–1319.

    Article  CAS  Google Scholar 

  • Dashipour, A., Razavilar, V., Hosseini, H., Aliabadi, S. S., German, J. B., Ghanati, K., et al. (2015). Antioxidant and antimicrobial carboxymethyl cellulose films containing Zataria multiflora essential oil. International Journal of Biological Macromolecules, 72, 606–613.

    Article  CAS  Google Scholar 

  • Devlieghere, F., Vermeule, A., & Debevere, J. (2004). Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiology, 21, 703–714.

    Article  CAS  Google Scholar 

  • Dhall, R. K. (2013). Advances in edible coatings for fresh fruits and vegetables: A review. Critical Reviews in Food Science and Nutrition, 53, 435–450.

    Article  CAS  Google Scholar 

  • Domard, M. (2001). Chitosan: Structure-properties relationship and biomedical applications. In D. Severian (Ed.), Polymeric biomaterials (pp. 187–212). New York: Marcel Decker Incorporated.

    Google Scholar 

  • Dong, C., Qian, L. Y., Zhao, G.-L., He, B.-H., & Xiao, H.-N. (2014). Preparation of antimicrobial cellulose fibers by grafting β-cyclodextrin and inclusion with antibiotics. Materials Letters, 124, 181–183.

    Article  CAS  Google Scholar 

  • Du, W.X., Olsen, C.W., Avena-Bustillos, R.J., McHugh, T.H., Levin, C.E., & Friedman, M. (2008). Antibacterial Activity against E. coli O157:H7, Physical Properties, and Storage Stability of Novel Carvacrol-Containing Edible Tomato Films. Journal of Food Science, 73, M378-M383.

    Google Scholar 

  • Dufresne, A. (1997). Mechanical behavior of films prepared from sugar beet cellulose microfibrils. Journal of Applied Polymer Science, 64, 1185–1194.

    Article  CAS  Google Scholar 

  • Durango, A. M., Soares, N. F. F., & Andrade, N. J. (2006). Microbiological evaluation of an edible antimicrobial coating on minimally processed carrots. Food Control, 17, 336–341.

    Article  CAS  Google Scholar 

  • Dutta, P. K., Tripathi, S., Mehrotra, G. K., & Dutta, J. (2009). Perspectives for chitosan based antimicrobial films in food applications. Food Chemistry, 114, 1173–1182.

    Article  CAS  Google Scholar 

  • Elizaquıvel, P., & Aznar, R. (2008). A multiplex RTi-PCR reaction for simultaneous detection of Escherichia coli O157:H7, Salmonella spp. and Staphylococcus aureus on fresh, minimally processed vegetables. Food Microbiology, 25, 705–713.

    Article  CAS  Google Scholar 

  • Falguera, V., Quintero, J. P., Jiménez, A., Muñoz, J. A., & Ibarz, A. (2011). Edible films and coatings: Structures, active functions and trends in their use Tr Food. Science and Technology, 22, 292–303.

    CAS  Google Scholar 

  • Farris, S., Schaich, K. M., Liu, L., Piergiovanni, L., & Yam, K. L. (2009). Development of polyion-complex hydrogels as an alternative approach for the production of bio-based polymers for food packaging applications: A review. Trends in Food Science and Technology, 20, 316–332.

    Article  CAS  Google Scholar 

  • Fisk, C. L., Silver, A. M., Strik, B. C., & Zhao, Y. (2008). Postharvest quality of hardy kiwifruit (Actinidia arguta “Ananasnaya”) associated with packaging and storage conditions. Postharvest Biology and Technology, 47, 338–345.

    Article  CAS  Google Scholar 

  • Fratianni, F., De Martino, L., Melone,A., De Feo, V., Coppola, R., & Nazzaro, F. (2010). Preservation of chicken breast meat treated with thyme and balm essential oils Journal of Food Science 75, M528-M535.

    Google Scholar 

  • Gibson, G. R., & Roberfroid, M. B. (1995). Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. Journal of Nutrition, 125, 1401–1412.

    CAS  Google Scholar 

  • Gobinath, D., Madhu, A. N., Prashant, G., Srinivasan, K., & Prapulla, S. G. (2010). Beneficial effect of xylo-oligosaccharides and fructo-oligosaccharides in streptozotocin-induced diabetic rats. British Journal of Nutrition, 104, 40–47.

    Article  CAS  Google Scholar 

  • Gombotz, W. R., & Wee, S. F. (1998). Protein release from alginate matrices. Advanced Drug Delivery Reviews, 31, 267–285.

    Article  CAS  Google Scholar 

  • Gonzalez-Aguilar, G. A., Celis, J., Sotelo-Mundo, R. R., De La Rosa, L. A., Rodrigo-Garcia, J., & Alvarez-Parrilla, E. (2008). Physiological and biochemical changes of different fresh-cut mango cultivars stored at 5 °C. International Journal of Food Science and Technology, 43, 91–101.

    Article  CAS  Google Scholar 

  • Gullon, B., Gomez, B., Martınez-Sabajanes, M., Yanez, R., Parajo, J. C., & Alonso, J. L. (2013). Pectic oligosaccharides: Manufacture and functional properties. Trends in Food Science and Technology, 30, 153–161.

    Article  CAS  Google Scholar 

  • Gullon, B., Gullon, P., Sanz, Y., Alonso, J. L., & Parajo, J. C. (2011). Prebiotic potential of a refined product containing pectic oligosaccharides. LWT Food Science and Technology, 44, 1687–1696.

    Article  CAS  Google Scholar 

  • Guo-Jane, M. T., Tsai, J. M., Lee, J., & Zhong, M. J. (2006). Effects of chitosan and a low-molecular-weight chitosan on Bacillus cereus and application in the preservation of cooked rice. Journal of Food Protection, 69, 2168–2175.

    Google Scholar 

  • Han, C., Zhao, Y., Leonard, S. W., & Traber, M. G. (2004). Edible coatings to improve storability and enhance nutritional value of fresh and frozen strawberries (Fragaria× ananassa) and raspberries (Rubus ideaus). Postharvest Biology and Technology, 33, 67–78.

    Article  CAS  Google Scholar 

  • Hansen, N. M. L., & Plackett, D. (2008). Sustainable films and coatings from hemicelluloses: A review. Biomacromolecules, 9, 1493–1505.

    Article  CAS  Google Scholar 

  • Hassan, E. A., Hassan, M. L., Moorefield, C. N., & Newkome, G. R. (2015). New supramolecular metallo-terpyridine carboxymethyl cellulose derivatives with antimicrobial properties. Carbohydrate Polymers, 116, 2–8.

    Article  CAS  Google Scholar 

  • Hidaka, H., Eida, T., Takiwaza, T., Tokunga, T., & Tashiro, Y. (1986). Effects of fructooligosaccharides on intestinal flora and human health. Bifidobacteria Microflora, 5, 37–50.

    Article  Google Scholar 

  • Jane, J. L., & Shen, J. J. (1993). Internal structure of the potato starch granule revealed by chemical gelatinization. Carbohydrate Research, 247, 279–290.

    Article  CAS  Google Scholar 

  • Jang, K. H., Joon, Y. Y., Lee, Y. H., Kang, Y. O., & Park, W. H. (2014). Antimicrobial activity of cellulose-based nanofibers with different Ag phases. Materials Letters, 116, 146–149.

    Article  CAS  Google Scholar 

  • Jiménez, A., Fabra, M., Talens, P., & Chiralt, A. (2012). Edible and biodegradable starch films: A review. Food and Bioprocess Technology, 5, 2058–2076.

    Article  CAS  Google Scholar 

  • Jin, T., Liu, L., Sommers, C. H., Boyd, G., & Zhang, H. (2009a). Radiation sensitization and postirradiation proliferation of Listeria monocytogenes on ready-to-eat delimeat in the presence of pectin-nisin films. Journal of Food Protection, 72, 644–649.

    Google Scholar 

  • Jin, T., Liu, L., Zhang, H., & Hicks, K. (2009b). Antimicrobial activity of nisin incorporated in pectin and polylactic acid composite films against Listeria monocytogenes. International Journal of Food Science and Technology, 44, 322–329.

    Article  CAS  Google Scholar 

  • Jolie, R. P., Duvetter, T., Van Loey, A. M., & Hendrickx, M. E. (2010). Pectin methylesterase and its proteinaceous inhibitor: A review. Carbohydrate Research, 345, 2583–2595.

    Article  CAS  Google Scholar 

  • Kang, O. L., Ghani, M., Hassan, O., Rahmati, S., & Ramli, N. (2014). Novel agaro-oligosaccharide production through enzymatic hydrolysis: Physicochemical properties and antioxidant activities. Food Hydrocolloids. doi:10.1016/j.foodhyd.2014.04.031.

    Google Scholar 

  • Kasemsuwan, T., & Jane, J. L. (1994). Location of amylose in normal starch granules. II. Location of phosphodiester cross-linking revealed by phosphorous-31 nuclear magnetic resonance. Cereal Chemistry, 71, 282–287.

    CAS  Google Scholar 

  • Kim, H. S., Lee, C. G., & Lee, E. Y. (2011). Alginate lyase: Structure, property, and application. Biotechnology and Bioprocess Engineering, 16, 843–851.

    Article  CAS  Google Scholar 

  • Kim, K. W., Thomas, R. L., Lee, C., & Park, H. J. (2003). Antimicrobial activity of native chitosan, degraded chitosan, and O-carboxymethylated chitosan. Journal of Food Protection, 66, 1495–1498.

    CAS  Google Scholar 

  • Koushki, M., Azizi, M. H., Koohy-Kamaly, P., Amiri, Z., & Azizkhani, M. (2015). Effect of calcium alginate coating on shelf life of frozen lamb muscle. Journal of Paramedical Sciences, 6, 30–35.

    Google Scholar 

  • Kuorwel, K., Cran, M. J., Sonneveld, K., Miltz, M., & Bigger, S. W. (2014). Evaluation of antifungal activity of antimicrobial agents on Cheddar cheese. Packaging Technology and Science, 27, 49–58.

    Article  CAS  Google Scholar 

  • Laurent, M. A., & Boulenguer, P. (2003). Stabilization mechanism of acid dairy drinks (ADD) induced by pectin. Food Hydrocolloids, 17, 445–454.

    Article  CAS  Google Scholar 

  • Levine, P., Green, R. S., Ransom, G., & Hill, W. (2001). Pathogen testing of ready-to-eat meat and poultry products collected at federally inspected establishments in the United States, 1990 to 1999. Journal of Food Protection, 4, 1188–1193.

    Google Scholar 

  • Li, T., Li, S., Du, L., et al. (2010). Effects of haw pectic oligosaccharide on lipid metabolism and oxidative stress in experimental hyperlipidemia mice induced by high-fat diet. Food Chemistry, 121, 1010–1013.

    Article  CAS  Google Scholar 

  • Li, B., & Xie, B. J. (2004). Synthesis and characterization of konjac glucomannan/poly (vinyl alcohol) interpenetrating polymer networks. Journal of Applied Polymer Science, 93, 2775–2780.

    Article  CAS  Google Scholar 

  • Liu, H., Du, Y., Wang, X., & Sun, L. (2004). Chitosan kills bacteria through cell membrane damage. International Journal of Food Microbiology, 95, 147–155.

    Article  CAS  Google Scholar 

  • Liu, X. F., Guan, Y. L., Yang, D. Z., Li, Z., & Yao, K. D. (2001). Antibacterial action of chitosan and carboxymethylated chitosan. Journal of Applied Polymer Science, 79, 1324–1335.

    Article  CAS  Google Scholar 

  • Mahalik, N. P., & Nambiar, A. N. (2010). Trends in food packaging and manufacturing systems and technology. Trends in Food Science and Technology, 21(3), 117–128.

    Article  CAS  Google Scholar 

  • Mild, R. M., Joens, L. A., Friedman, M., Olsen, C. W., McHugh, T. H., Law, B., et al. (2011). Antimicrobial edible apple films inactivate antibiotic resistant and susceptible Campylobacter jejuni strains on chicken breast. Journal of Food Science, 76, M163–M168.

    Article  CAS  Google Scholar 

  • Mishra, R. K., Banthia, A. K., & Majeed, A. B. A. (2012). Pectin based formulations for biomedical applications: A review. Journal of Pharmaceutical and Clinical Research, 5, 1–7.

    CAS  Google Scholar 

  • Moure, A., Gullon, P., Domınguez, H., & Parajo, J. C. (2006). Advances in the manufacture, purification and applications of xylo-oligosaccharides as food additives and nutraceuticals. Process Biochemistry, 41, 1913–1923.

    Article  CAS  Google Scholar 

  • Mussatto, S. I., & Mancilha, I. M. (2007). Non-digestible oligosaccharides: A review. Carbohydrate Polymers, 68, 587–597.

    Article  CAS  Google Scholar 

  • Nazzaro, F., Fratianni, F., Sada, A., & Orlando, P. (2008). Synbiotic potential of carrot juice supplemented with Lactobacillus spp. and inulin or fructooligosaccharides. Journal of the Science of Food and Agriculture, 88, 2271–2276.

    Article  CAS  Google Scholar 

  • Nazzaro, F., Caliendo, G., Arnesi, G., Veronesi, A., Sarzi, P., & Fratianni, F. (2009). Comparative content of some bioactive compounds in two varieties of Capsicum annuum L. sweet pepper and evaluation of their antimicrobial and mutagenic activities. Journal of Food Biochemistry, 33, 852–868.

    Google Scholar 

  • Nazzaro, F., Orlando, P., Fratianni, F., & Coppola, R. (2012a). Microencapsulation in food science and biotechnology. Current Opinion in Biotechnology, 23, 182–186.

    Article  CAS  Google Scholar 

  • Nazzaro, F., Fratianni, F., Nicolaus, B., Poli, A., & Orlando, P. (2012b). The prebiotic source influences the growth, biochemical features and survival under simulated gastrointestinal conditions of the probiotic Lactobacillus acidophilus. Anaerobe, 18, 280–285.

    Google Scholar 

  • Nazzaro, F., Fratianni, F., Orlando, P., & Coppola, R. (2012c). Biochemical traits, survival and biological properties of the probiotic Lactobacillus plantarum grown in the presence of prebiotic inulin and pectin as energy source. Pharmaceuticals, 5, 481–492.

    Google Scholar 

  • No, H. K., Park, N. Y., Lee, S. H., & Meyers, S. P. (2002). Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. International Journal of Food Microbiology, 74, 65–72.

    Article  CAS  Google Scholar 

  • Pagno, C. H., Costa, T. M. H., de Menezes, E. W., Benvenutti, E. V., Hertz, P. F., Matte, C. R., et al. (2015). Development of active biofilms of quinoa (Chenopodium quinoa W.) starch containing gold nanoparticles and evaluation of antimicrobial activity. Food Chemistry, 173, 755–762.

    Article  CAS  Google Scholar 

  • Park, S. I., Daeschel, M. A., & Zhao, Y. (2004a). Functional properties of antimicrobial lysozyme‐chitosan composite films. Journal of Food Science, 69, M215–M221.

    Article  CAS  Google Scholar 

  • Park, P. J., Je, J. Y., Byun, H. G., Moon, S. H., & Kim, S. E. (2004b). Antimicrobial activity of hetero-chitosans and their oligosaccharides with different molecular weights. Journal of Microbiology and Biotechnology, 14, 317–323.

    CAS  Google Scholar 

  • Pawar, S. N., & Edgar, K. J. (2012). Alginate derivatization: A review of chemistry, properties and applications. Biomaterials, 33, 3279–3305.

    Article  CAS  Google Scholar 

  • Peat, S., Whelan, W. J., & Thomas, G. J. (1952). Evidence of multiple branching in waxy maize starch. Journal of the Chemical Society, 4546–4548.

    Google Scholar 

  • Perez, S., & Bertoft, E. (2010). The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. Starch-Starke, 62, 389–420.

    Article  CAS  Google Scholar 

  • Pranoto, Y., Rakshit, S. K., & Salokhe, V. M. (2005). Enhancing antimicrobial activity of chitosan films by incorporating garlic oil, potassium sorbate and nisin. LWT Food Science and Technology, 38, 859–865.

    Article  CAS  Google Scholar 

  • Qiang, X., Yonglie, C., & Qianbing, W. (2009). Health benefit application of functional oligosaccharides. Carbohydrate Polymers, 77, 435–441.

    Article  CAS  Google Scholar 

  • Qin, C., Li, H., Xiao, Q., Liu, Y., Zhu, J., & Du, Y. (2006). Water-solubility of chitosan and its antimicrobial activity. Carbohydrate Polymers, 63, 367–374.

    Article  CAS  Google Scholar 

  • Ravishankar, S., Zhu, L., Olsen, C. W., McHugh, T. H., & Friedman, M. (2009). Edible apple film wraps containing plant antimicrobials inactivate foodborne pathogens on meat and poultry products. Journal of Food Science, 74, M440–M445.

    Article  CAS  Google Scholar 

  • Ravishankar, S., Jaroni, D., Zhu, L., Olsen, C., McHugh, T., & Friedman, M. (2012). Inactivation of Listeria monocytogenes on ham and bologna using pectin-based apple, carrot, and hibiscus edible films containing carvacrol and cinnamaldehyde, Journal of Food Science, vol. 77, no. 7, pp. 377–382.

    Google Scholar 

  • Resa, C. P. O., Gerschenson, L. N., & Rosa, J. (2014). Natamycin and nisin supported on starch edible films for controlling mixed culture growth on model systems and Port Salut cheese. Food Control, 44, 146–151.

    Article  CAS  Google Scholar 

  • Ribeiro, C., Vicente, A. A., Teixeira, J. A., & Miranda, C. (2007). Optimization of edible coating composition to retard strawberry fruit senescence. Postharvest Biology and Technology, 44, 63–70.

    Article  CAS  Google Scholar 

  • Ring, S. G., L’Anson, K., & Morris, V. J. (1985). Static and dynamic light scattering studies of amylose solutions. Macromolecules, 18, 182–188.

    Article  CAS  Google Scholar 

  • Roberfroid, M. B. (2001). Prebiotics: Preferential substrates for specific germs? American Journal of Clinical Nutrition, 73, 406–409.

    Google Scholar 

  • Roberts, M., & Greenwood, M. (2003). Listeria monocytogenes (3rd ed., pp. 273–274). Malden, MA: Practical Food Microbiology Blackwell Publishing.

    Google Scholar 

  • Rojas-Graü, M. A., Avena-Bustillos, R. J., Friedman, M., Henika, P. R., Martín-Belloso, O., & McHugh, T. H. (2006). Mechanical, barrier, and antimicrobial properties of apple puree edible films containing plant essential oils. Journal of Agricultural and Food Chemistry, 54, 9262–9267.

    Article  CAS  Google Scholar 

  • Roopa, B. S., & Bhattacharya, S. (2008). Alginate gels: Characterization of textural attributes. Journal of Food Engineering, 85, 123–131.

    Article  CAS  Google Scholar 

  • Sako, T., Matsumoto, K., & Tanaka, R. (1999). Recent progress on research and applications of non-digestible galacto-oligosaccharides. International Dairy Journal, 9, 69–80.

    Article  CAS  Google Scholar 

  • Sebti, I., Martial-Gros, A., Carnet-Pantiez, A., Grelier, S., & Coma, V. (2005). Chitosan polymer as bioactive coating and film against Aspergillus niger contamination. Journal of Food Science, 70, 100–104.

    Article  Google Scholar 

  • Shen, X. L., Wu, J. M., Chen, Y., & Zhao, G. (2010). Antimicrobial and physical properties of sweet potato starch films incorporated with potassium sorbate or chitosan. Food Hydrocolloids, 24, 285–290.

    Article  CAS  Google Scholar 

  • Soykeabkaew, N., Arimoto, N., Nishino, T., & Peijs, T. (2008). All-cellulose composites by surface selective dissolution of aligned ligno-cellulosic fibres. Composites Science and Technology, 68, 2201–2207.

    Article  CAS  Google Scholar 

  • Tsai, G., Su, W., Chen, H., & Pan, C. (2002). Antimicrobial activity of shrimp chitin and chitosan from different treatments and applications of fish preservation. Fisheries Science, 68, 70–177.

    Google Scholar 

  • Tsai, G. J., Wu, Z. Y., & Su, W. H. (2000). Antibacterial activity of a chitooligosaccharide mixture prepared by cellulase digestion of shrimp chitosan and its application to milk preservation. Journal of Food Protection, 63, 747–752.

    CAS  Google Scholar 

  • Valencia-Chamorro, S. A., Palou, L., Del Rio, M. A., & Pérez-Gago, M. B. (2013). Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: A review. Critical Reviews in Food Science and Nutrition, 51, 872–900.

    Article  CAS  Google Scholar 

  • Vargas, M., Pastor, C., Chiralt, A., McClements, D. J., & González-Martínez, C. (2008). Recent advances in edible coatings for fresh and minimally processed fruit. Critical Reviews in Food Science and Nutrition, 48, 496–511.

    Article  CAS  Google Scholar 

  • Vasconez, M. B., Flores, S. K., Campos, C. A., Alvarado, J., & Gerschenson, L. N. (2009). Antimicrobial activity and physical properties of chitosan–tapioca starch based edible films and coatings. Food Research International, 42, 762–769.

    Article  CAS  Google Scholar 

  • Videcoq, P., Garnier, C., Robert, P., & Bonnin, E. (2011). Influence of calcium on pectin methylesterase behaviour in the presence of medium methylated pectins. Carbohydrate Polymers, 86, 1657–1664.

    Article  CAS  Google Scholar 

  • Wang, X., & Gibson, G. R. (1993). Effects of the in vitro fermentation of oligofructose and inulin by bacteria growing in the human large intestine. Journal of Applied Bacteriology, 75, 373–380.

    Article  CAS  Google Scholar 

  • Whang, H., Huang, Z. H., Hu, R., & He, J. Y. (2015). Preservative effects of antimicrobial controlled-release coatings containing tea polyphenols nanoparticles on tilapia fillets. In Shang & Wang (Eds.), Manufacturing and engineering technology (pp. 433–437). Boca Raton, FL: Taylor and Francis Group.

    Google Scholar 

  • Willats, W. T., McCartney, L., Mackie, W., & Knox, J. P. (2001). Pectin: Cell biology and prospects for functional analysis. Plant Molecular Biology, 47, 9–27.

    Article  CAS  Google Scholar 

  • Wong, T. Y., Preston, L. A., & Schiller, N. L. (2000). Alginate lyase: Review of major sources and enzyme characteristics, structure–function analysis, biological roles, and applications. Annual Review of Microbiology, 54, 289–340.

    Article  CAS  Google Scholar 

  • Zhai, M., Zhao, L., Yoshii, F., & Kume, T. (2004). Study on antibacterial starch/chitosan blend film formed under the action of irradiation. Carbohydrate Polymers, 57, 83–88.

    Article  CAS  Google Scholar 

  • Zhang, L., Ruich, L., Dong, F., Tian, A., Lia, Z., & Dai, Y. (2015). Physical, mechanical and antimicrobial properties of starch films incorporated with ε-poly-l-lysine. Food Chemistry, 166, 107–114.

    Article  CAS  Google Scholar 

  • Zhao, X., Li, B. F., Xue, C. H., & Sun, L. P. (2012). Effect of molecular weight on the antioxidant property of low molecular weight alginate from Laminaria japonica. Journal of Applied Phycology, 24, 295–300.

    Article  CAS  Google Scholar 

  • Ziani, K., Fernandez-Pan, I., Royo, M., & Mate, I. J. (2009). Antifungal activity of films and solutions based on chitosan against typical seed fungi. Food Hydrocolloids, 23(2009), 2309–2314.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filomena Nazzaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nazzaro, F., Fratianni, F., Cozzolino, A., Granese, T., Coppola, R. (2016). Active Carbohydrates. In: Siddiqui, M., Ayala Zavala, J., Hwang, CA. (eds) Postharvest Management Approaches for Maintaining Quality of Fresh Produce. Springer, Cham. https://doi.org/10.1007/978-3-319-23582-0_9

Download citation

Publish with us

Policies and ethics