Skip to main content

The Cardiopulmonary Hemodynamic Evaluation of Pulmonary Hypertension

  • Chapter
Pulmonary Hypertension

Abstract

Pulmonary hypertension, defined as mean pulmonary artery pressure ≥25 mmHg at rest as assessed by right heart catheterization, may be the end result of primary pathology of the pulmonary vasculature or of various other, systemic processes that affect the pulmonary vessels in either directly or indirectly. Pulmonary hypertension causes diverse effects on many other organs, the most important being the heart and specifically its right-sided chambers. Non-invasive and invasive methods to assess the severity of disease and the magnitude of cardiac effects have been extensively studied and many are now applied in clinical practice. This chapter will review in detail the evaluation of patients with pulmonary hypertension, including the methods used in the physical examination, echocardiogram and right heart catheterization, as well as guidance in interpretation of these results. Methods to evaluate the effects of the disease on the heart, to distinguish pulmonary hypertension caused by pulmonary vascular pathology from that caused by left heart disease, provocative maneuvers used to unveil pulmonary hypertension caused by left heart disease and pulmonary vasoreactivity testing are also discussed. Finally, we present the challenges of the diagnosis and treatment of special populations with pulmonary hypertension, such as adults with congenital heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Simonneau G, Robbins IM, Beghetti M, Channick RN, Delcroix M, Denton CP, Elliott CG, Gaine SP, Gladwin MT, Jing ZC, Krowka MJ, Langleben D, Nakanishi N, Souza R. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2009;54:S43–54.

    Article  PubMed  Google Scholar 

  2. Hachulla E, Gressin V, Guillevin L, Carpentier P, Diot E, Sibilia J, Kahan A, Cabane J, Frances C, Launay D, Mouthon L, Allanore Y, Tiev KP, Clerson P, de Groote P, Humbert M. Early detection of pulmonary arterial hypertension in systemic sclerosis: a French nationwide prospective multicenter study. Arthritis Rheum. 2005;52:3792–800.

    Article  PubMed  Google Scholar 

  3. Humbert M, Sitbon O, Chaouat A, Bertocchi M, Habib G, Gressin V, Yaici A, Weitzenblum E, Cordier JF, Chabot F, Dromer C, Pison C, Reynaud-Gaubert M, Haloun A, Laurent M, Hachulla E, Simonneau G. Pulmonary arterial hypertension in France: results from a national registry. Am J Respir Crit Care Med. 2006;173:1023–30.

    Article  PubMed  Google Scholar 

  4. Peacock AJ, Murphy NF, McMurray JJ, Caballero L, Stewart S. An epidemiological study of pulmonary arterial hypertension. Eur Respir J. 2007;30:104–9.

    Article  CAS  PubMed  Google Scholar 

  5. Duffels MG, Engelfriet PM, Berger RM, van Loon RL, Hoendermis E, Vriend JW, van der Velde ET, Bresser P, Mulder BJ. Pulmonary arterial hypertension in congenital heart disease: an epidemiologic perspective from a Dutch registry. Int J Cardiol. 2007;120:198–204.

    Article  CAS  PubMed  Google Scholar 

  6. Condliffe R, Kiely DG, Gibbs JS, Corris PA, Peacock AJ, Jenkins DP, Hodgkins D, Goldsmith K, Hughes RJ, Sheares K, Tsui SS, Armstrong IJ, Torpy C, Crackett R, Carlin CM, Das C, Coghlan JG, Pepke-Zaba J. Improved outcomes in medically and surgically treated chronic thromboembolic pulmonary hypertension. Am J Respir Crit Care Med. 2008;177:1122–7.

    Article  PubMed  Google Scholar 

  7. Kovacs G, Berghold A, Scheidl S, Olschewski H. Pulmonary arterial pressure during rest and exercise in healthy subjects: a systematic review. Eur Respir J. 2009;34:888–94.

    Article  CAS  PubMed  Google Scholar 

  8. Badesch DB, Champion HC, Sanchez MA, Hoeper MM, Loyd JE, Manes A, McGoon M, Naeije R, Olschewski H, Oudiz RJ, Torbicki A. Diagnosis and assessment of pulmonary arterial hypertension. J Am Coll Cardiol. 2009;54:S55–66.

    Article  PubMed  Google Scholar 

  9. Galie N, Hoeper MM, Humbert M, Torbicki A, Vachiery JL, Barbera JA, Beghetti M, Corris P, Gaine S, Gibbs JS, Gomez-Sanchez MA, Jondeau G, Klepetko W, Opitz C, Peacock A, Rubin L, Zellweger M, Simonneau G. Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J. 2009;30:2493–537.

    Article  PubMed  Google Scholar 

  10. McLaughlin VV, Archer SL, Badesch DB, Barst RJ, Farber HW, Lindner JR, Mathier MA, McGoon MD, Park MH, Rosenson RS, Rubin LJ, Tapson VF, Varga J. ACCF/AHA 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. J Am Coll Cardiol. 2009;53:1573–619.

    Article  PubMed  Google Scholar 

  11. Hoeper MM, Bogaard HJ, Condliffe R, Frantz R, Khanna D, Kurzyna M, Langleben D, Manes A, Satoh T, Torres F, Wilkins MR, Badesch DB. Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol. 2013;62:D42–50.

    Article  PubMed  Google Scholar 

  12. Gabbay E, Yeow W, Playford D. Pulmonary arterial hypertension (PAH) is an uncommon cause of pulmonary hypertension (PH) in an unselected population: the Armadale echocardiography study. Am J Resp Crit Care Med. 2007;A713.

    Google Scholar 

  13. Champion HC, Michelakis ED, Hassoun PM. Comprehensive invasive and noninvasive approach to the right ventricle-pulmonary circulation unit: state of the art and clinical and research implications. Circulation. 2009;120:992–1007.

    Article  PubMed  Google Scholar 

  14. McGee SR. Evidence-based physical diagnosis. Philadelphia: Elsevier/Saunders; 2012.

    Book  Google Scholar 

  15. Wiese J. The abdominojugular reflux sign. Am J Med. 2000;109:59–61.

    Article  CAS  PubMed  Google Scholar 

  16. Opotowsky AR, Ojeda J, Rogers F, Arkles J, Liu T, Forfia PR. Blood pressure response to the valsalva maneuver. A simple bedside test to determine the hemodynamic basis of pulmonary hypertension. J Am Coll Cardiol. 2010;56:1352–3.

    Article  PubMed  Google Scholar 

  17. Felker GM, Cuculich PS, Gheorghiade M. The Valsalva maneuver: a bedside “biomarker” for heart failure. Am J Med. 2006;119:117–22.

    Article  PubMed  Google Scholar 

  18. Opotowsky AR, Ojeda J, Rogers F, Prasanna V, Clair M, Moko L, Vaidya A, Afilalo J, Forfia PR. A simple echocardiographic prediction rule for hemodynamics in pulmonary hypertension. Circ Cardiovasc Imaging. 2012;5:765–75.

    Article  PubMed Central  PubMed  Google Scholar 

  19. McGoon M, Gutterman D, Steen V, Barst R, McCrory DC, Fortin TA, Loyd JE. Screening, early detection, and diagnosis of pulmonary arterial hypertension: ACCP evidence-based clinical practice guidelines. Chest. 2004;126:14S–34.

    Article  PubMed  Google Scholar 

  20. Rich JD, Shah SJ, Swamy RS, Kamp A, Rich S. Inaccuracy of Doppler echocardiographic estimates of pulmonary artery pressures in patients with pulmonary hypertension: implications for clinical practice. Chest. 2011;139:988–93.

    Article  PubMed  Google Scholar 

  21. Giardini A. Limitations inherent to the simplified Bernoulli equation explain the inaccuracy of Doppler echocardiographic estimates of pulmonary artery pressures in patients with pulmonary hypertension. Chest. 2011;140:270; author reply 270–271.

    Article  PubMed  Google Scholar 

  22. Fisher MR, Criner GJ, Fishman AP, Hassoun PM, Minai OA, Scharf SM, Fessler HE. Estimating pulmonary artery pressures by echocardiography in patients with emphysema. Eur Respir J. 2007;30:914–21.

    Article  CAS  PubMed  Google Scholar 

  23. Fisher MR, Forfia PR, Chamera E, Housten-Harris T, Champion HC, Girgis RE, Corretti MC, Hassoun PM. Accuracy of Doppler echocardiography in the hemodynamic assessment of pulmonary hypertension. Am J Respir Crit Care Med. 2009;179:615–21.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, Solomon SD, Louie EK, Schiller NB. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23:685–713; quiz 786–688.

    Article  PubMed  Google Scholar 

  25. Brennan JM, Blair JE, Goonewardena S, Ronan A, Shah D, Vasaiwala S, Kirkpatrick JN, Spencer KT. Reappraisal of the use of inferior vena cava for estimating right atrial pressure. J Am Soc Echocardiogr. 2007;20:857–61.

    Article  PubMed  Google Scholar 

  26. Abbas AE, Fortuin FD, Schiller NB, Appleton CP, Moreno CA, Lester SJ. Echocardiographic determination of mean pulmonary artery pressure. Am J Cardiol. 2003;92:1373–6.

    Article  PubMed  Google Scholar 

  27. Aduen JF, Castello R, Lozano MM, Hepler GN, Keller CA, Alvarez F, Safford RE, Crook JE, Heckman MG, Burger CD. An alternative echocardiographic method to estimate mean pulmonary artery pressure: diagnostic and clinical implications. J Am Soc Echocardiogr. 2009;22:814–9.

    Article  PubMed  Google Scholar 

  28. Lee RT, Lord CP, Plappert T, Sutton MS. Prospective Doppler echocardiographic evaluation of pulmonary artery diastolic pressure in the medical intensive care unit. Am J Cardiol. 1989;64:1366–70.

    Article  CAS  PubMed  Google Scholar 

  29. Ge Z, Zhang Y, Ji X, Fan D, Duran CM. Pulmonary artery diastolic pressure: a simultaneous Doppler echocardiography and catheterization study. Clin Cardiol. 1992;15:818–24.

    Article  CAS  PubMed  Google Scholar 

  30. Stephen B, Dalal P, Berger M, Schweitzer P, Hecht S. Noninvasive estimation of pulmonary artery diastolic pressure in patients with tricuspid regurgitation by Doppler echocardiography. Chest. 1999;116:73–7.

    Article  CAS  PubMed  Google Scholar 

  31. Selimovic N, Rundqvist B, Bergh CH, Andersson B, Petersson S, Johansson L, Bech-Hanssen O. Assessment of pulmonary vascular resistance by Doppler echocardiography in patients with pulmonary arterial hypertension. J Heart Lung Transplant. 2007;26:927–34.

    Article  PubMed  Google Scholar 

  32. Abbas AE, Fortuin FD, Schiller NB, Appleton CP, Moreno CA, Lester SJ. A simple method for noninvasive estimation of pulmonary vascular resistance. J Am Coll Cardiol. 2003;41:1021–7.

    Article  PubMed  Google Scholar 

  33. Farzaneh-Far R, McKeown BH, Dang D, Roberts J, Schiller NB, Foster E. Accuracy of Doppler-estimated pulmonary vascular resistance in patients before liver transplantation. Am J Cardiol. 2008;101:259–62.

    Article  PubMed  Google Scholar 

  34. Haddad F, Zamanian R, Beraud AS, Schnittger I, Feinstein J, Peterson T, Yang P, Doyle R, Rosenthal D. A novel non-invasive method of estimating pulmonary vascular resistance in patients with pulmonary arterial hypertension. J Am Soc Echocardiogr. 2009;22:523–9.

    Article  PubMed  Google Scholar 

  35. Opotowsky AR, Clair M, Afilalo J, Landzberg MJ, Waxman AB, Moko L, Maron BA, Vaidya A, Forfia PR. A simple echocardiographic method to estimate pulmonary vascular resistance. Am J Cardiol. 2013;112:873–82.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Opotowsky AR, Santos M, Maron BA, Afilalo J, Waxman AB, Landzberg MJ, Forfia PR. Towards widespread noninvasive assessment of pulmonary vascular resistance in clinical practice. J Am Soc Echocardiogr. 2014;27:108–9.

    Article  PubMed  Google Scholar 

  37. Scapellato F, Temporelli PL, Eleuteri E, Corra U, Imparato A, Giannuzzi P. Accurate noninvasive estimation of pulmonary vascular resistance by Doppler echocardiography in patients with chronic failure heart failure. J Am Coll Cardiol. 2001;37:1813–9.

    Article  CAS  PubMed  Google Scholar 

  38. Bossone E, Duong-Wagner TH, Paciocco G, Oral H, Ricciardi M, Bach DS, Rubenfire M, Armstrong WF. Echocardiographic features of primary pulmonary hypertension. J Am Soc Echocardiogr. 1999;12:655–62.

    Article  CAS  PubMed  Google Scholar 

  39. Bustamante-Labarta M, Perrone S, De La Fuente RL, Stutzbach P, De La Hoz RP, Torino A, Favaloro R. Right atrial size and tricuspid regurgitation severity predict mortality or transplantation in primary pulmonary hypertension. J Am Soc Echocardiogr. 2002;15:1160–4.

    Article  PubMed  Google Scholar 

  40. Jardin F, Dubourg O, Bourdarias JP. Echocardiographic pattern of acute cor pulmonale. Chest. 1997;111:209–17.

    Article  CAS  PubMed  Google Scholar 

  41. Lai WW, Gauvreau K, Rivera ES, Saleeb S, Powell AJ, Geva T. Accuracy of guideline recommendations for two-dimensional quantification of the right ventricle by echocardiography. Int J Cardiovasc Imaging. 2008;24:691–8.

    Article  PubMed  Google Scholar 

  42. Anavekar NS, Gerson D, Skali H, Kwong RY, Yucel EK, Solomon SD. Two-dimensional assessment of right ventricular function: an echocardiographic-MRI correlative study. Echocardiography. 2007;24:452–6.

    Article  PubMed  Google Scholar 

  43. Nass N, McConnell MV, Goldhaber SZ, Chyu S, Solomon SD. Recovery of regional right ventricular function after thrombolysis for pulmonary embolism. Am J Cardiol. 1999;83:804–6, A810.

    Article  CAS  PubMed  Google Scholar 

  44. Zornoff LA, Skali H, Pfeffer MA, St John Sutton M, Rouleau JL, Lamas GA, Plappert T, Rouleau JR, Moye LA, Lewis SJ, Braunwald E, Solomon SD. Right ventricular dysfunction and risk of heart failure and mortality after myocardial infarction. J Am Coll Cardiol. 2002;39:1450–5.

    Article  PubMed  Google Scholar 

  45. Anavekar NS, Skali H, Bourgoun M, Ghali JK, Kober L, Maggioni AP, McMurray JJ, Velazquez E, Califf R, Pfeffer MA, Solomon SD. Usefulness of right ventricular fractional area change to predict death, heart failure, and stroke following myocardial infarction (from the VALIANT ECHO Study). Am J Cardiol. 2008;101:607–12.

    Article  PubMed  Google Scholar 

  46. Tei C, Dujardin KS, Hodge DO, Bailey KR, McGoon MD, Tajik AJ, Seward SB. Doppler echocardiographic index for assessment of global right ventricular function. J Am Soc Echocardiogr. 1996;9:838–47.

    Article  CAS  PubMed  Google Scholar 

  47. Dyer KL, Pauliks LB, Das B, Shandas R, Ivy D, Shaffer EM, Valdes-Cruz LM. Use of myocardial performance index in pediatric patients with idiopathic pulmonary arterial hypertension. J Am Soc Echocardiogr. 2006;19:21–7.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Yeo TC, Dujardin KS, Tei C, Mahoney DW, McGoon MD, Seward JB. Value of a Doppler-derived index combining systolic and diastolic time intervals in predicting outcome in primary pulmonary hypertension. Am J Cardiol. 1998;81:1157–61.

    Article  CAS  PubMed  Google Scholar 

  49. Eidem BW, O’Leary PW, Tei C, Seward JB. Usefulness of the myocardial performance index for assessing right ventricular function in congenital heart disease. Am J Cardiol. 2000;86:654–8.

    Article  CAS  PubMed  Google Scholar 

  50. Ueti OM, Camargo EE, Ueti Ade A, de Lima-Filho EC, Nogueira EA. Assessment of right ventricular function with Doppler echocardiographic indices derived from tricuspid annular motion: comparison with radionuclide angiography. Heart. 2002;88:244–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Forfia PR, Fisher MR, Mathai SC, Housten-Harris T, Hemnes AR, Borlaug BA, Chamera E, Corretti MC, Champion HC, Abraham TP, Girgis RE, Hassoun PM. Tricuspid annular displacement predicts survival in pulmonary hypertension. Am J Respir Crit Care Med. 2006;174:1034–41.

    Article  PubMed  Google Scholar 

  52. Badano LP, Ginghina C, Easaw J, Muraru D, Grillo MT, Lancellotti P, Pinamonti B, Coghlan G, Marra MP, Popescu BA, De Vita S. Right ventricle in pulmonary arterial hypertension: haemodynamics, structural changes, imaging, and proposal of a study protocol aimed to assess remodelling and treatment effects. Eur J Echocardiogr. 2010;11:27–37.

    Article  PubMed  Google Scholar 

  53. Naeije R, Torbicki A. More on the noninvasive diagnosis of pulmonary hypertension: Doppler echocardiography revisited. Eur Respir J. 1995;8:1445–9.

    CAS  PubMed  Google Scholar 

  54. Kitabatake A, Inoue M, Asao M, Masuyama T, Tanouchi J, Morita T, Mishima M, Uematsu M, Shimazu T, Hori M, Abe H. Noninvasive evaluation of pulmonary hypertension by a pulsed Doppler technique. Circulation. 1983;68:302–9.

    Article  CAS  PubMed  Google Scholar 

  55. Arkles JS, Opotowsky AR, Ojeda J, Rogers F, Liu T, Prassana V, Marzec L, Palevsky HI, Ferrari VA, Forfia PR. Shape of the right ventricular Doppler envelope predicts hemodynamics and right heart function in pulmonary hypertension. Am J Respir Crit Care Med. 2011;183:268–76.

    Article  PubMed  Google Scholar 

  56. Dabestani A, Mahan G, Gardin JM, Takenaka K, Burn C, Allfie A, Henry WL. Evaluation of pulmonary artery pressure and resistance by pulsed Doppler echocardiography. Am J Cardiol. 1987;59:662–8.

    Article  CAS  PubMed  Google Scholar 

  57. Burgess MI, Bright-Thomas RJ, Ray SG. Echocardiographic evaluation of right ventricular function. Eur J Echocardiogr. 2002;3:252–62.

    CAS  PubMed  Google Scholar 

  58. Haddad F, Hunt SA, Rosenthal DN, Murphy DJ. Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation. 2008;117:1436–48.

    Article  PubMed  Google Scholar 

  59. Ryan T, Petrovic O, Dillon JC, Feigenbaum H, Conley MJ, Armstrong WF. An echocardiographic index for separation of right ventricular volume and pressure overload. J Am Coll Cardiol. 1985;5:918–27.

    Article  CAS  PubMed  Google Scholar 

  60. Raymond RJ, Hinderliter AL, Willis PW, Ralph D, Caldwell EJ, Williams W, Ettinger NA, Hill NS, Summer WR, de Boisblanc B, Schwartz T, Koch G, Clayton LM, Jobsis MM, Crow JW, Long W. Echocardiographic predictors of adverse outcomes in primary pulmonary hypertension. J Am Coll Cardiol. 2002;39:1214–9.

    Article  PubMed  Google Scholar 

  61. Marcus JT, Gan CT, Zwanenburg JJ, Boonstra A, Allaart CP, Gotte MJ, Vonk-Noordegraaf A. Interventricular mechanical asynchrony in pulmonary arterial hypertension: left-to-right delay in peak shortening is related to right ventricular overload and left ventricular underfilling. J Am Coll Cardiol. 2008;51:750–7.

    Article  PubMed  Google Scholar 

  62. Hinderliter AL, Willis PW, Long W, Clarke WR, Ralph D, Caldwell EJ, Williams W, Ettinger NA, Hill NS, Summer WR, de Biosblanc B, Koch G, Li S, Clayton LM, Jobsis MM, Crow JW. Frequency and prognostic significance of pericardial effusion in primary pulmonary hypertension. PPH Study Group. Primary pulmonary hypertension. Am J Cardiol. 1999;84:481–4, A410.

    Article  CAS  PubMed  Google Scholar 

  63. Heupler Jr FA. Guidelines for performing angiography in patients taking metformin. Members of the Laboratory Performance Standards Committee of the Society for Cardiac Angiography and Interventions. Cathet Cardiovasc Diagn. 1998;43:121–3.

    Article  PubMed  Google Scholar 

  64. Cote P, Campeau L, Bourassa MG. Therapeutic implications of diazepam in patients with elevated left ventricular filling pressure. Am Heart J. 1976;91:747–51.

    Article  CAS  PubMed  Google Scholar 

  65. Francis GS, Cohn JN. The autonomic nervous system in congestive heart failure. Annu Rev Med. 1986;37:235–47.

    Article  CAS  PubMed  Google Scholar 

  66. Groeneveld AB, Berendsen RR, Schneider AJ, Pneumatikos IA, Stokkel LA, Thijs LG. Effect of the mechanical ventilatory cycle on thermodilution right ventricular volumes and cardiac output. J Appl Physiol (1985). 2000;89:89–96.

    CAS  Google Scholar 

  67. Couture P, Denault AY, Shi Y, Deschamps A, Cossette M, Pellerin M, Tardif JC. Effects of anesthetic induction in patients with diastolic dysfunction. Can J Anaesth. 2009;56:357–65.

    Article  PubMed  Google Scholar 

  68. Biondi JW, Schulman DS, Soufer R, Matthay RA, Hines RL, Kay HR, Barash PG. The effect of incremental positive end-expiratory pressure on right ventricular hemodynamics and ejection fraction. Anesth Analg. 1988;67:144–51.

    Article  CAS  PubMed  Google Scholar 

  69. Theres H, Binkau J, Laule M, Heinze R, Hundertmark J, Blobner M, Erhardt W, Baumann G, Stangl K. Phase-related changes in right ventricular cardiac output under volume-controlled mechanical ventilation with positive end-expiratory pressure. Crit Care Med. 1999;27:953–8.

    Article  CAS  PubMed  Google Scholar 

  70. Ragosta M. Normal waveforms, artifacts, and pitfalls. In: Textbook of clinical hemodynamics. Philadelphia: Saunders/Elsevier; 2008.

    Google Scholar 

  71. Summerhill EM, Baram M. Principles of pulmonary artery catheterization in the critically ill. Lung. 2005;183:209–19.

    Article  PubMed  Google Scholar 

  72. Dehmer GJ, Firth BG, Hillis LD. Oxygen consumption in adult patients during cardiac catheterization. Clin Cardiol. 1982;5:436–40.

    Article  CAS  PubMed  Google Scholar 

  73. Ranu H, Smith K, Nimako K, Sheth A, Madden BP. A retrospective review to evaluate the safety of right heart catheterization via the internal jugular vein in the assessment of pulmonary hypertension. Clin Cardiol. 2010;33:303–6.

    Article  PubMed  Google Scholar 

  74. Hemnes AR, Forfia PR, Champion HC. Assessment of pulmonary vasculature and right heart by invasive haemodynamics and echocardiography. Int J Clin Pract Suppl. 2009;162:4–19.

    Google Scholar 

  75. Rutten AJ, Nancarrow C, Ilsley AH, Runciman WB. An assessment of six different pulmonary artery catheters. Crit Care Med. 1987;15:250–5.

    Article  CAS  PubMed  Google Scholar 

  76. Oliveira RK, Ferreira EV, Ramos RP, Messina CM, Kapins CE, Silva CM, Ota-Arakaki JS. Usefulness of pulmonary capillary wedge pressure as a correlate of left ventricular filling pressures in pulmonary arterial hypertension. J Heart Lung Transplant. 2014;33:157–62.

    Article  PubMed  Google Scholar 

  77. Ryan JJ, Rich JD, Thiruvoipati T, Swamy R, Kim GH, Rich S. Current practice for determining pulmonary capillary wedge pressure predisposes to serious errors in the classification of patients with pulmonary hypertension. Am Heart J. 2012;163:589–94.

    Article  PubMed  Google Scholar 

  78. Sabbah HN, Anbe DT, Stein PD. Negative intraventricular diastolic pressure in patients with mitral stenosis: evidence of left ventricular diastolic suction. Am J Cardiol. 1980;45:562–6.

    Article  CAS  PubMed  Google Scholar 

  79. Paulus WJ, Vantrimpont PJ, Rousseau MF. Diastolic function of the nonfilling human left ventricle. J Am Coll Cardiol. 1992;20:1524–32.

    Article  CAS  PubMed  Google Scholar 

  80. Courtois M, Fattal PG, Kovacs Jr SJ, Tiefenbrunn AJ, Ludbrook PA. Anatomically and physiologically based reference level for measurement of intracardiac pressures. Circulation. 1995;92:1994–2000.

    Article  CAS  PubMed  Google Scholar 

  81. Baim DS, Grossman W. Grossman’s cardiac catheterization, angiography, and intervention. Philadelphia: Lippincott Williams & Wilkins; 2006.

    Google Scholar 

  82. Falsetti HL, Mates RE, Carroll RJ, Gupta RL, Bell AC. Analysis and correction of pressure wave distortion in fluid-filled catheter systems. Circulation. 1974;49:165–72.

    Article  CAS  PubMed  Google Scholar 

  83. Irvin CG, Sampson M, Engel L, Grassino AE. Effect of breathing pattern on esophageal pressure gradients in humans. J Appl Physiol Respir Environ Exerc Physiol. 1984;57:168–75.

    CAS  PubMed  Google Scholar 

  84. D’Alonzo GE, Barst RJ, Ayres SM, Bergofsky EH, Brundage BH, Detre KM, Fishman AP, Goldring RM, Groves BM, Kernis JT, et al. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med. 1991;115:343–9.

    Article  PubMed  Google Scholar 

  85. Thenappan T, Shah SJ, Rich S, Tian L, Archer SL, Gomberg-Maitland M. Survival in pulmonary arterial hypertension: a reappraisal of the NIH risk stratification equation. Eur Respir J. 2010;35:1079–87.

    Article  CAS  PubMed  Google Scholar 

  86. Dias CA, Assad RS, Caneo LF, Abduch MC, Aiello VD, Dias AR, Marcial MB, Oliveira SA. Reversible pulmonary trunk banding. II. An experimental model for rapid pulmonary ventricular hypertrophy. J Thorac Cardiovasc Surg. 2002;124:999–1006.

    Article  PubMed  Google Scholar 

  87. Chen EP, Craig DM, Bittner HB, Davis RD, Van Trigt P. Pharmacological strategies for improving diastolic dysfunction in the setting of chronic pulmonary hypertension. Circulation. 1998;97:1606–12.

    Article  CAS  PubMed  Google Scholar 

  88. Stein PD, Sabbah HN, Anbe DT, Marzilli M. Performance of the failing and nonfailing right ventricle of patients with pulmonary hypertension. Am J Cardiol. 1979;44:1050–5.

    Article  CAS  PubMed  Google Scholar 

  89. Chemla D, Castelain V, Herve P, Lecarpentier Y, Brimioulle S. Haemodynamic evaluation of pulmonary hypertension. Eur Respir J. 2002;20:1314–31.

    Article  CAS  PubMed  Google Scholar 

  90. Fishman AP, Fisher AB. The respiratory system. Bethesda: American Physiological Society, Distributed by Williams & Wilkins; 1985.

    Google Scholar 

  91. Naeije R, Vachiery JL, Yerly P, Vanderpool R. The transpulmonary pressure gradient for the diagnosis of pulmonary vascular disease. Eur Respir J. 2013;41:217–23.

    Article  PubMed  Google Scholar 

  92. Tedford RJ, Beaty CA, Mathai SC, Kolb TM, Damico R, Hassoun PM, Leary PJ, Kass DA, Shah AS. Prognostic value of the pre-transplant diastolic pulmonary artery pressure-to-pulmonary capillary wedge pressure gradient in cardiac transplant recipients with pulmonary hypertension. J Heart Lung Transplant. 2014;33:289–97.

    Article  PubMed Central  PubMed  Google Scholar 

  93. Tampakakis E, Leary PJ, Selby VN, De Marco T, Cappola TP, Felker GM, Russell SD, Kasper EK, Tedford RJ. The diastolic pulmonary gradient does not predict survival in patients with pulmonary hypertension due to left heart disease. JACC Heart Fail. 2015;3:9–16.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Zidulka A, Hakim TS. Wedge pressure in large vs. small pulmonary arteries to detect pulmonary venoconstriction. J Appl Physiol (1985). 1985;59:1329–32.

    CAS  Google Scholar 

  95. Hellems HK, Haynes FW, Dexter L. Pulmonary capillary pressure in man. J Appl Physiol. 1949;2:24–9.

    CAS  PubMed  Google Scholar 

  96. Kafi SA, Melot C, Vachiery JL, Brimioulle S, Naeije R. Partitioning of pulmonary vascular resistance in primary pulmonary hypertension. J Am Coll Cardiol. 1998;31:1372–6.

    Article  CAS  PubMed  Google Scholar 

  97. Teboul JL, Andrivet P, Ansquer M, Besbes M, Rekik N, Lemaire F, Brun-Buisson C. Bedside evaluation of the resistance of large and medium pulmonary veins in various lung diseases. J Appl Physiol (1985). 1992;72:998–1003.

    CAS  Google Scholar 

  98. Cournand A, Riley RL, Breed ES, Baldwin ED, Richards DW, Lester MS, Jones M. Measurement of cardiac output in man using the technique of catheterization of the right auricle or ventricle. J Clin Invest. 1945;24:106–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Stead EA, Warren JV, Merrill AJ, Brannon ES. The cardiac output in male subjects as measured by the technique of right atrial catheterization. Normal values with observations on the effect of anxiety and tilting. J Clin Invest. 1945;24:326–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Kendrick AH, West J, Papouchado M, Rozkovec A. Direct Fick cardiac output: are assumed values of oxygen consumption acceptable? Eur Heart J. 1988;9:337–42.

    CAS  PubMed  Google Scholar 

  101. Fakler U, Pauli C, Hennig M, Sebening W, Hess J. Assumed oxygen consumption frequently results in large errors in the determination of cardiac output. J Thorac Cardiovasc Surg. 2005;130:272–6.

    Article  PubMed  Google Scholar 

  102. Ultman JS, Bursztein S. Analysis of error in the determination of respiratory gas exchange at varying FIO2. J Appl Physiol Respir Environ Exerc Physiol. 1981;50:210–6.

    CAS  PubMed  Google Scholar 

  103. Narang N, Thibodeau JT, Levine BD, Gore MO, Ayers CR, Lange RA, Cigarroa JE, Turer AT, de Lemos JA, McGuire DK. Inaccuracy of estimated resting oxygen uptake in the clinical setting. Circulation. 2014;129:203–10.

    Article  CAS  PubMed  Google Scholar 

  104. Moise SF, Sinclair CJ, Scott DH. Pulmonary artery blood temperature and the measurement of cardiac output by thermodilution. Anaesthesia. 2002;57:562–6.

    Article  CAS  PubMed  Google Scholar 

  105. Lehmann KG, Platt MS. Improved accuracy and precision of thermodilution cardiac output measurement using a dual thermistor catheter system. J Am Coll Cardiol. 1999;33:883–91.

    Article  CAS  PubMed  Google Scholar 

  106. Hoeper MM, Maier R, Tongers J, Niedermeyer J, Hohlfeld JM, Hamm M, Fabel H. Determination of cardiac output by the Fick method, thermodilution, and acetylene rebreathing in pulmonary hypertension. Am J Respir Crit Care Med. 1999;160:535–41.

    Article  CAS  PubMed  Google Scholar 

  107. Hillis LD, Firth BG, Winniford MD. Analysis of factors affecting the variability of Fick versus indicator dilution measurements of cardiac output. Am J Cardiol. 1985;56:764–8.

    Article  CAS  PubMed  Google Scholar 

  108. Rich S, Dantzker DR, Ayres SM, Bergofsky EH, Brundage BH, Detre KM, Fishman AP, Goldring RM, Groves BM, Koerner SK, et al. Primary pulmonary hypertension. A national prospective study. Ann Intern Med. 1987;107:216–23.

    Article  CAS  PubMed  Google Scholar 

  109. Sandoval J, Bauerle O, Palomar A, Gomez A, Martinez-Guerra ML, Beltran M, Guerrero ML. Survival in primary pulmonary hypertension. Validation of a prognostic equation. Circulation. 1994;89:1733–44.

    Article  CAS  PubMed  Google Scholar 

  110. McGregor M, Sniderman A. On pulmonary vascular resistance: the need for more precise definition. Am J Cardiol. 1985;55:217–21.

    Article  CAS  PubMed  Google Scholar 

  111. Addonizio LJ, Gersony WM, Robbins RC, Drusin RE, Smith CR, Reison DS, Reemtsma K, Rose EA. Elevated pulmonary vascular resistance and cardiac transplantation. Circulation. 1987;76:V52–5.

    Article  CAS  PubMed  Google Scholar 

  112. Tartulier M, Bourret M, Deyrieux F. Pulmonary arterial pressures in normal subjects. Effects of age and muscular exercise. Bull Physiopathol Respir (Nancy). 1972;8:1295–321.

    CAS  Google Scholar 

  113. Ehrsam RE, Perruchoud A, Oberholzer M, Burkart F, Herzog H. Influence of age on pulmonary haemodynamics at rest and during supine exercise. Clin Sci (Lond). 1983;65:653–60.

    Article  CAS  Google Scholar 

  114. Weir EK, Reeves JT. Pulmonary hypertension. Mount Kisco: Futura Pub. Co.; 1984.

    Google Scholar 

  115. Sitbon O, Humbert M, Jais X, Ioos V, Hamid AM, Provencher S, Garcia G, Parent F, Herve P, Simonneau G. Long-term response to calcium channel blockers in idiopathic pulmonary arterial hypertension. Circulation. 2005;111:3105–11.

    Article  CAS  PubMed  Google Scholar 

  116. Barst RJ, Langleben D, Frost A, Horn EM, Oudiz R, Shapiro S, McLaughlin V, Hill N, Tapson VF, Robbins IM, Zwicke D, Duncan B, Dixon RA, Frumkin LR. Sitaxsentan therapy for pulmonary arterial hypertension. Am J Respir Crit Care Med. 2004;169:441–7.

    Article  PubMed  Google Scholar 

  117. Borlaug BA, Nishimura RA, Sorajja P, Lam CS, Redfield MM. Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. Circ Heart Fail. 2010;3:588–95.

    Article  PubMed Central  PubMed  Google Scholar 

  118. Fujimoto N, Borlaug BA, Lewis GD, Hastings JL, Shafer KM, Bhella PS, Carrick-Ranson G, Levine BD. Hemodynamic responses to rapid saline loading: the impact of age, sex, and heart failure. Circulation. 2013;127:55–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Andersen MJ, Olson TP, Melenovsky V, Kane GC, Borlaug BA. Differential hemodynamic effects of exercise and volume expansion in people with and without heart failure. Circ Heart Fail. 2015;8:41–8.

    Article  PubMed  Google Scholar 

  120. Opotowsky AR. Clinical evaluation and management of pulmonary hypertension in the adult with congenital heart disease. Circulation. 2015;131:200–10.

    Article  PubMed  Google Scholar 

  121. Lentner C. Geigy scientific tables: heart and circulation. West Caldwell: CIBA-GEIGY Corporation; 1990.

    Google Scholar 

  122. Davidson CJ, Bonow R. Cardiac catheterization. In: Braunwald’s heart disease: a textbook. Philadelphia: Elsevier Saunders; 2012. p. 383–405.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander R. Opotowsky MD, MPH, MMSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Buber, Y., Opotowsky, A.R. (2016). The Cardiopulmonary Hemodynamic Evaluation of Pulmonary Hypertension. In: Maron, B., Zamanian, R., Waxman, A. (eds) Pulmonary Hypertension. Springer, Cham. https://doi.org/10.1007/978-3-319-23594-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23594-3_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23593-6

  • Online ISBN: 978-3-319-23594-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics