Skip to main content

Renin-Angiotensin-Aldosterone and Other Neurohumoral Factors in the Pathogenesis of Pulmonary Hypertension

  • Chapter
Pulmonary Hypertension

Abstract

Converging lines of evidence indicate that upregulation of renin-angiotensin-aldosterone and neurohumoral signaling contributes to the pathobiology of pulmonary vascular disease. In animal models of pulmonary arterial hypertension (PAH) and in PAH patients, angiotensin II or aldosterone are associated with abnormal pulmonary vascular resistance, elevated pulmonary artery pressure, and impaired right ventricular-pulmonary arterial coupling. These findings are in concert with experimental data demonstrating an association between these vascular effectors and cell signaling mechanisms that promote vascular fibrosis and dysregulated survival patterns in pulmonary vascular cells in vitro, among other pathways implicated in pulmonary arterial remodeling in PAH. Additionally, recent findings implicating regulation of right ventricular cardiomyocyte function by endogenously synthesized catecholamines provide a critical scientific framework for unraveling differences in pressure loading response patterns between the right and left ventricles. This chapter reviews angiotensin II, aldosterone, and catecholamines collectively as a specific axis by which to target therapeutics for patients affected by PAH and other pulmonary vascular diseases of overlapping pathobiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Forfia PR, Fisher MR, Mathai SC, Housten-Harris T, Hemnes AR, Borlaug BA, et al. Tricuspid annular displacement predicts survival in pulmonary hypertension. Am J Respir Crit Care Med. 2006;174(9):1034–41.

    Article  PubMed  Google Scholar 

  2. Mehra MR, Park MH, Landzberg MJ, Lala A, Waxman AB. Right heart failure: toward a common language. J Heart Lung Transplant. 2014;33(2):123–6.

    Article  PubMed  Google Scholar 

  3. Wang GY, McCloskey DT, Turcato S, Swigart PM, Simpson PC, Baker AJ. Contrasting inotropic responses to alpha1-adrenergic receptor stimulation in left versus right ventricular myocardium. Am J Physiol Heart Circ Physiol. 2006;291(4):H2013–7.

    Article  CAS  PubMed  Google Scholar 

  4. Rudner XL, Berkowitz DE, Booth JV, Funk BL, Cozart KL, D’Amico EB, et al. Subtype specific regulation of human vascular alpha(1)-adrenergic receptors by vessel bed and age. Circulation. 1999;100(23):2336–43.

    Article  CAS  PubMed  Google Scholar 

  5. Cavallotti C, Mancone M, Bruzzone P, Sabbatini M, Mignini F. Dopamine receptor subtypes in the native human heart. Heart Vessels. 2010;25(5):432–7.

    Article  PubMed  Google Scholar 

  6. Barnes PJ, Liu SF. Regulation of pulmonary vascular tone. Pharmacol Rev. 1995;47(1):87–131.

    CAS  PubMed  Google Scholar 

  7. Chen SL, Zhang YJ, Zhou L, Xie DJ, Zhang FF, Jia HB, et al. Percutaneous pulmonary artery denervation completely abolishes experimental pulmonary arterial hypertension in vivo. EuroIntervention. 2013;9(2):269–76.

    Article  PubMed  Google Scholar 

  8. Chen SL, Zhang FF, Xu J, Xie DJ, Zhou L, Nguyen T, et al. Pulmonary artery denervation to treat pulmonary arterial hypertension: the single-center, prospective, first-in-man PADN-1 study (first-in-man pulmonary artery denervation for treatment of pulmonary artery hypertension). J Am Coll Cardiol. 2013;62(12):1092–100.

    Article  PubMed  Google Scholar 

  9. Nagaya N, Nishikimi T, Uematsu M, Satoh T, Kyotani S, Sakamaki F, et al. Plasma brain natriuretic peptide as a prognostic indicator in patients with primary pulmonary hypertension. Circulation. 2000;102(8):865–70.

    Article  CAS  PubMed  Google Scholar 

  10. Nootens M, Kaufmann E, Rector T, Toher C, Judd D, Francis GS, et al. Neurohormonal activation in patients with right ventricular failure from pulmonary hypertension: relation to hemodynamic variables and endothelin levels. J Am Coll Cardiol. 1995;26(7):1581–5.

    Article  CAS  PubMed  Google Scholar 

  11. Velez-Roa S, Ciarka A, Najem B, Vachiery JL, Naeije R, van de Borne P. Increased sympathetic nerve activity in pulmonary artery hypertension. Circulation. 2004;110(10):1308–12.

    Article  PubMed  Google Scholar 

  12. Leblais V, Delannoy E, Fresquet F, Begueret H, Bellance N, Banquet S, et al. beta-adrenergic relaxation in pulmonary arteries: preservation of the endothelial nitric oxide-dependent beta2 component in pulmonary hypertension. Cardiovasc Res. 2008;77(1):202–10.

    Article  CAS  PubMed  Google Scholar 

  13. Kim GH, Ryan JJ, Archer SL. The role of redox signaling in epigenetics and cardiovascular disease. Antioxid Redox Signal. 2013;18(15):1920–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Chakraborti S, Roy S, Chowdhury A, Mandal A, Chakraborti T. Role of PKCalpha-p38 MAPK-Gialpha axis in peroxynitrite-mediated inhibition of beta-adrenergic response in pulmonary artery smooth muscle cells. Cell Signal. 2013;25(2):512–26.

    Article  CAS  PubMed  Google Scholar 

  15. Faber JE, Szymeczek CL, Salvi SS, Zhang H. Enhanced alpha1-adrenergic trophic activity in pulmonary artery of hypoxic pulmonary hypertensive rats. Am J Physiol Heart Circ Physiol. 2006;291(5):H2272–81.

    Article  CAS  PubMed  Google Scholar 

  16. Hool LC, Oleksa LM, Harvey RD. Role of G proteins in alpha1-adrenergic inhibition of the beta-adrenergically activated chloride current in cardiac myocytes. Mol Pharmacol. 1997;51(5):853–60.

    CAS  PubMed  Google Scholar 

  17. Piao L, Fang YH, Parikh KS, Ryan JJ, D’Souza KM, Theccanat T, et al. GRK2-mediated inhibition of adrenergic and dopaminergic signaling in right ventricular hypertrophy: therapeutic implications in pulmonary hypertension. Circulation. 2012;126(24):2859–69.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Bristow MR, Minobe W, Rasmussen R, Larrabee P, Skerl L, Klein JW, et al. Beta-adrenergic neuroeffector abnormalities in the failing human heart are produced by local rather than systemic mechanisms. J Clin Invest. 1992;89(3):803–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Ungerer M, Bohm M, Elce JS, Erdmann E, Lohse MJ. Altered expression of beta-adrenergic receptor kinase and beta 1-adrenergic receptors in the failing human heart. Circulation. 1993;87(2):454–63.

    Article  CAS  PubMed  Google Scholar 

  20. Leineweber K, Brandt K, Wludyka B, Beilfuss A, Ponicke K, Heinroth-Hoffmann I, et al. Ventricular hypertrophy plus neurohumoral activation is necessary to alter the cardiac beta-adrenoceptor system in experimental heart failure. Circ Res. 2002;91(11):1056–62.

    Article  CAS  PubMed  Google Scholar 

  21. Bogaard HJ, Natarajan R, Mizuno S, Abbate A, Chang PJ, Chau VQ, et al. Adrenergic receptor blockade reverses right heart remodeling and dysfunction in pulmonary hypertensive rats. Am J Respir Crit Care Med. 2010;182(5):652–60.

    Article  CAS  PubMed  Google Scholar 

  22. de Man FS, Handoko ML, van Ballegoij JJ, Schalij I, Bogaards SJ, Postmus PE, et al. Bisoprolol delays progression towards right heart failure in experimental pulmonary hypertension. Circ Heart Fail. 2012;5(1):97–105.

    Article  PubMed  Google Scholar 

  23. Voelkel NF, McMurtry IF, Reeves JT. Chronic propranolol treatment blunts right ventricular hypertrophy in rats at high altitude. J Appl Physiol Respir Environ Exerc Physiol. 1980;48(3):473–8.

    CAS  PubMed  Google Scholar 

  24. Madden KS, Szpunar MJ, Brown EB. beta-Adrenergic receptors (beta-AR) regulate VEGF and IL-6 production by divergent pathways in high beta-AR-expressing breast cancer cell lines. Breast Cancer Res Treat. 2012;130(3):747–58.

    Article  Google Scholar 

  25. Hadri L, Kratlian RG, Benard L, Maron BA, Dorfmuller P, Ladage D, et al. Therapeutic efficacy of AAV1.SERCA2a in monocrotaline-induced pulmonary arterial hypertension. Circulation. 2013;128(5):512–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Provencher S, Herve P, Jais X, Lebrec D, Humbert M, Simonneau G, et al. Deleterious effects of beta-blockers on exercise capacity and hemodynamics in patients with portopulmonary hypertension. Gastroenterology. 2006;130(1):120–6.

    Article  CAS  PubMed  Google Scholar 

  27. Peacock A, Ross K. Pulmonary hypertension: a contraindication to the use of {beta}-adrenoceptor blocking agents. Thorax. 2010;65(5):454–5.

    Article  CAS  PubMed  Google Scholar 

  28. Gomberg-Maitland M, Bull TM, Saggar R, Barst RJ, Elgazayerly A, Fleming TR, et al. New trial designs and potential therapies for pulmonary artery hypertension. J Am Coll Cardiol. 2013;62(25 Suppl):D82–91.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Aguero J, Ishikawa K, Hadri L, Santos-Gallego C, Fish K, Hammoudi N, et al. Characterization of right ventricular remodeling and failure in a chronic pulmonary hypertension model. Am J Physiol Heart Circ Physiol. 2014;307(8):H1204–15.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Maron BA, Opotowsky AR, Landzberg MJ, Loscalzo J, Waxman AB, Leopold JA. Plasma aldosterone levels are elevated in patients with pulmonary arterial hypertension in the absence of left ventricular heart failure: a pilot study. Eur J Heart Fail. 2013;15(3):277–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Heinemann HO, Ryan JW, Ryan US. Is the lung a para-endocrine organ? Am J Med. 1977;63(4):595–603.

    Article  CAS  PubMed  Google Scholar 

  32. Wenz M, Steinau R, Gerlach H, Lange M, Kaczmarczyk G. Inhaled nitric oxide does not change transpulmonary angiotensin II formation in patients with acute respiratory distress syndrome. Chest. 1997;112(2):478–83.

    Article  CAS  PubMed  Google Scholar 

  33. Wilkens H, Bauer M, Forestier N, Konig J, Eichler A, Schneider S, et al. Influence of inhaled iloprost on transpulmonary gradient of big endothelin in patients with pulmonary hypertension. Circulation. 2003;107(11):1509–13.

    Article  CAS  PubMed  Google Scholar 

  34. Peacock AJ, Matthews A. Transpulmonary angiotensin II formation and pulmonary haemodynamics in stable hypoxic lung disease: the effect of captopril. Respir Med. 1992;86(1):21–6.

    Article  CAS  PubMed  Google Scholar 

  35. Takeda Y, Miyamori I, Yoneda T, Hatakeyama H, Inaba S, Furukawa K, et al. Regulation of aldosterone synthase in human vascular endothelial cells by angiotensin II and adrenocorticotropin. J Clin Endocrinol Metab. 1996;81(8):2797–800.

    CAS  PubMed  Google Scholar 

  36. Young MJ, Clyne CD, Cole TJ, Funder JW. Cardiac steroidogenesis in the normal and failing heart. J Clin Endocrinol Metab. 2001;86(11):5121–6.

    Article  CAS  PubMed  Google Scholar 

  37. Maron BA, Zhang YY, White K, Chan SY, Handy DE, Mahoney CE, et al. Aldosterone inactivates the endothelin-B receptor via a cysteinyl thiol redox switch to decrease pulmonary endothelial nitric oxide levels and modulate pulmonary arterial hypertension. Circulation. 2012;126(8):963–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Farquharson CA, Struthers AD. Aldosterone induces acute endothelial dysfunction in vivo in humans: evidence for an aldosterone-induced vasculopathy. Clin Sci (Lond). 2002;103(4):425–31.

    Article  CAS  Google Scholar 

  39. Preston IR, Sagliani KD, Warburton RR, Hill NS, Fanburg BL, Jaffe IZ. Mineralocorticoid receptor antagonism attenuates experimental pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2012;304(10):L678–88.

    Article  Google Scholar 

  40. Yamanaka R, Otsuka F, Nakamura K, Yamashita M, Otani H, Takeda M, et al. Involvement of the bone morphogenetic protein system in endothelin- and aldosterone-induced cell proliferation of pulmonary arterial smooth muscle cells isolated from human patients with pulmonary arterial hypertension. Hypertens Res. 2010;33(5):435–45.

    Article  CAS  PubMed  Google Scholar 

  41. Aghamohammedzadeh R, Heagerty A, Loscalzo J, Maron BA, Leopold JA, editors. Raptor activation by aldoseterone promotes apoptosis resistance in pulmonary artery smooth muscle cells to modulate adverse pulmonary vascular remodeling in pulmonary arterial hypertension (abstract). 2013 Federation of American Societies for Experimental Biology National Meeting. Boston; 2013.

    Google Scholar 

  42. Goncharov DA, Kudryashova TV, Ziai H, Ihida-Stansbury K, DeLisser H, Krymskaya VP, et al. Mammalian target of rapamycin complex 2 (mTORC2) coordinates pulmonary artery smooth muscle cell metabolism, proliferation, and survival in pulmonary arterial hypertension. Circulation. 2014;129(8):864–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Carlsen J, Hasseriis Andersen K, Boesgaard S, Iversen M, Steinbruchel D, Bogelund Andersen C. Pulmonary arterial lesions in explanted lungs after transplantation correlate with severity of pulmonary hypertension in chronic obstructive pulmonary disease. J Heart Lung Transplant. 2013;32(3):347–54.

    Article  PubMed  Google Scholar 

  44. Weber KT, Sun Y, Bhattacharya SK, Ahokas RA, Gerling IC. Myofibroblast-mediated mechanisms of pathological remodelling of the heart. Nat Rev Cardiol. 2013;10(1):15–26.

    Article  CAS  PubMed  Google Scholar 

  45. Graham BB, Chabon J, Gebreab L, Poole J, Debella E, Davis L, et al. Transforming growth factor-beta signaling promotes pulmonary hypertension caused by Schistosoma mansoni. Circulation. 2013;128(12):1354–64.

    Article  CAS  PubMed  Google Scholar 

  46. Austin ED, Lahm T, West J, Tofovic SP, Johansen AK, Maclean MR, et al. Gender, sex hormones and pulmonary hypertension. Pulm Circ. 2013;3(2):294–314.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Brown NJ. Contribution of aldosterone to cardiovascular and renal inflammation and fibrosis. Nat Rev Nephrol. 2013;9(8):459–69.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Caprio M, Newfell BG, la Sala A, Baur W, Fabbri A, Rosano G, et al. Functional mineralocorticoid receptors in human vascular endothelial cells regulate intercellular adhesion molecule-1 expression and promote leukocyte adhesion. Circ Res. 2008;102(11):1359–67.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Kokubu T, Kazatani Y, Hamada M, Matsuzaki K, Ito T, Nishimura K, et al. Is captopril effective in primary pulmonary hypertension? Jpn Circ J. 1982;46(10):1095–7.

    Article  CAS  PubMed  Google Scholar 

  50. Maron BA, Waxman AB, Opotowsky AR, Gillies H, Blair C, Aghamohammadzadeh R, et al. Effectiveness of spironolactone plus ambrisentan for treatment of pulmonary arterial hypertension (from the [ARIES] study 1 and 2 trials). Am J Cardiol. 2013;112(5):720–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Bertoli L, Fusco M, Lo Cicero S, Micallef E, Busnardo I. Influence of ACE inhibition on pulmonary haemodynamics and function in patients in whom beta-blockers are contraindicated. Postgrad Med J. 1986;62 Suppl 1:47–51.

    PubMed  Google Scholar 

  52. Bader M. ACE2, angiotensin-(1–7), and Mas: the other side of the coin. Pflugers Arch. 2013;465(1):79–85.

    Article  CAS  PubMed  Google Scholar 

  53. Hoeper MM, Bogaard HJ, Condliffe R, Frantz R, Khanna D, Kurzyna M, et al. Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol. 2013;62(25 Suppl):D42–50.

    Article  PubMed  Google Scholar 

  54. Morrell NW, Morris KG, Stenmark KR. Role of angiotensin-converting enzyme and angiotensin II in development of hypoxic pulmonary hypertension. Am J Physiol. 1995;269(4 Pt 2):H1186–94.

    CAS  PubMed  Google Scholar 

  55. Morrell NW, Atochina EN, Morris KG, Danilov SM, Stenmark KR. Angiotensin converting enzyme expression is increased in small pulmonary arteries of rats with hypoxia-induced pulmonary hypertension. J Clin Invest. 1995;96(4):1823–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Wolf G. Role of reactive oxygen species in angiotensin II-mediated renal growth, differentiation, and apoptosis. Antioxid Redox Signal. 2005;7(9–10):1337–45.

    Article  CAS  PubMed  Google Scholar 

  57. de Man FS, Tu L, Handoko ML, Rain S, Ruiter G, Francois C, et al. Dysregulated renin-angiotensin-aldosterone system contributes to pulmonary arterial hypertension. Am J Respir Crit Care Med. 2012;186(8):780–9.

    Article  PubMed  Google Scholar 

  58. Zhang R, Wu Y, Zhao M, Liu C, Zhou L, Shen S, et al. Role of HIF-1alpha in the regulation ACE and ACE2 expression in hypoxic human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2009;297(4):L631–40.

    Article  CAS  PubMed  Google Scholar 

  59. Johnson JA, West J, Maynard KB, Hemnes AR. ACE2 improves right ventricular function in a pressure overload model. PLoS One. 2011;6(6):e20828.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Yamazato Y, Ferreira AJ, Hong KH, Sriramula S, Francis J, Yamazato M, et al. Prevention of pulmonary hypertension by Angiotensin-converting enzyme 2 gene transfer. Hypertension. 2009;54(2):365–71.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Ferreira AJ, Shenoy V, Yamazato Y, Sriramula S, Francis J, Yuan L, et al. Evidence for angiotensin-converting enzyme 2 as a therapeutic target for the prevention of pulmonary hypertension. Am J Respir Crit Care Med. 2009;179(11):1048–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Ling Y, Johnson MK, Kiely DG, Condliffe R, Elliot CA, Gibbs JS, et al. Changing demographics, epidemiology, and survival of incident pulmonary arterial hypertension: results from the pulmonary hypertension registry of the United Kingdom and Ireland. Am J Respir Crit Care Med. 2012;186(8):790–6.

    Article  PubMed  Google Scholar 

  63. Humbert M, Sitbon O, Chaouat A, Bertocchi M, Habib G, Gressin V, et al. Survival in patients with idiopathic, familial, and anorexigen-associated pulmonary arterial hypertension in the modern management era. Circulation. 2012;122(2):156–63.

    Article  Google Scholar 

  64. Benza RL, Miller DP, Gomberg-Maitland M, Frantz RP, Foreman AJ, Coffey CS, et al. Predicting survival in pulmonary arterial hypertension: insights from the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL). Circulation. 2012;122(2):164–72.

    Article  Google Scholar 

  65. Ventetuolo CE, Praestgaard A, Palevsky HI, Klinger JR, Halpern SD, Kawut SM. Sex and haemodynamics in pulmonary arterial hypertension. Eur Respir J. 2014;43(2):523–30.

    Article  PubMed Central  PubMed  Google Scholar 

  66. West J, Cogan J, Geraci M, Robinson L, Newman J, Phillips JA, et al. Gene expression in BMPR2 mutation carriers with and without evidence of pulmonary arterial hypertension suggests pathways relevant to disease penetrance. BMC Med Genomics. 2008;1:45.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Austin ED, Cogan JD, West JD, Hedges LK, Hamid R, Dawson EP, et al. Alterations in oestrogen metabolism: implications for higher penetrance of familial pulmonary arterial hypertension in females. Eur Respir J. 2009;34(5):1093–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. White K, Johansen AK, Nilsen M, Ciuclan L, Wallace E, Paton L, et al. Activity of the estrogen-metabolizing enzyme cytochrome P450 1B1 influences the development of pulmonary arterial hypertension. Circulation. 2012;126(9):1087–98.

    Article  CAS  PubMed  Google Scholar 

  69. Shang W, Konidari I, Schomberg DW. 2-Methoxyestradiol, an endogenous estradiol metabolite, differentially inhibits granulosa and endothelial cell mitosis: a potential follicular antiangiogenic regulator. Biol Reprod. 2001;65(2):622–7.

    Article  CAS  PubMed  Google Scholar 

  70. Dempsie Y, MacRitchie NA, White K, Morecroft I, Wright AF, Nilsen M, et al. Dexfenfluramine and the oestrogen-metabolizing enzyme CYP1B1 in the development of pulmonary arterial hypertension. Cardiovasc Res. 2013;99(1):24–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Tofovic SP, Zhang X, Zhu H, Jackson EK, Rafikova O, Petrusevska G. 2-Ethoxyestradiol is antimitogenic and attenuates monocrotaline-induced pulmonary hypertension and vascular remodeling. Vascul Pharmacol. 2008;48(4–6):174–83.

    Article  CAS  PubMed  Google Scholar 

  72. Auchus RJ. Overview of dehydroepiandrosterone biosynthesis. Semin Reprod Med. 2004;22(4):281–8.

    Article  CAS  PubMed  Google Scholar 

  73. Paulin R, Meloche J, Jacob MH, Bisserier M, Courboulin A, Bonnet S. Dehydroepiandrosterone inhibits the Src/STAT3 constitutive activation in pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol. 2011;301(5):H1798–809.

    Article  CAS  PubMed  Google Scholar 

  74. Oka M, Karoor V, Homma N, Nagaoka T, Sakao E, Golembeski SM, et al. Dehydroepiandrosterone upregulates soluble guanylate cyclase and inhibits hypoxic pulmonary hypertension. Cardiovasc Res. 2007;74(3):377–87.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Leopold JA, Dam A, Maron BA, Scribner AW, Liao R, Handy DE, et al. Aldosterone impairs vascular reactivity by decreasing glucose-6-phosphate dehydrogenase activity. Nat Med. 2007;13(2):189–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Leopold JA, Loscalzo J. Cyclic strain modulates resistance to oxidant stress by increasing G6PDH expression in smooth muscle cells. Am J Physiol Heart Circ Physiol. 2000;279(5):H2477–85.

    CAS  PubMed  Google Scholar 

  77. Bonnet S, Dumas-de-La-Roque E, Begueret H, Marthan R, Fayon M, Dos Santos P, et al. Dehydroepiandrosterone (DHEA) prevents and reverses chronic hypoxic pulmonary hypertension. Proc Natl Acad Sci U S A. 2003;100(16):9488–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Archer SL, Weir EK, Reeve HL, Michelakis E. Molecular identification of O2 sensors and O2-sensitive potassium channels in the pulmonary circulation. Adv Exp Med Biol. 2000;475:219–40.

    CAS  PubMed  Google Scholar 

  79. Liu Y, Suzuki YJ, Day RM, Fanburg BL. Rho kinase-induced nuclear translocation of ERK1/ERK2 in smooth muscle cell mitogenesis caused by serotonin. Circ Res. 2004;95(6):579–86.

    Article  CAS  PubMed  Google Scholar 

  80. Dumas de La Roque E, Savineau JP, Metivier AC, Billes MA, Kraemer JP, Doutreleau S, et al. Dehydroepiandrosterone (DHEA) improves pulmonary hypertension in chronic obstructive pulmonary disease (COPD): a pilot study. Ann Endocrinol (Paris). 2012;73(1):20–5.

    Article  CAS  Google Scholar 

  81. Alzoubi A, Toba M, Abe K, O’Neill KD, Rocic P, Fagan KA, et al. Dehydroepiandrosterone restores right ventricular structure and function in rats with severe pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol. 2013;304(12):H1708–18.

    Article  CAS  PubMed  Google Scholar 

  82. Maron BA, Leopold JA. Emerging concepts in the molecular basis of pulmonary arterial hypertension: Part II: Neurohumoral signaling contributes to the pulmonary vascular and right ventricular pathophenotype of pulmonary arterial hypertension. Circulation 2015;131(23):2079–91.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradley A. Maron MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Maron, B.A., Stephens, T.E., Leopold, J.A. (2016). Renin-Angiotensin-Aldosterone and Other Neurohumoral Factors in the Pathogenesis of Pulmonary Hypertension. In: Maron, B., Zamanian, R., Waxman, A. (eds) Pulmonary Hypertension. Springer, Cham. https://doi.org/10.1007/978-3-319-23594-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23594-3_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23593-6

  • Online ISBN: 978-3-319-23594-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics