Skip to main content

Part of the book series: SpringerBriefs in Mathematics ((BRIEFSMATH))

Abstract

The interpolation problem is a significant motivating problem in algebraic geometry and commutative algebra. Naively, the goal of the interpolation problem is to consider a collection of points in some ambient space, perhaps with some restrictions, and to describe all the polynomials that vanish at this collection. Introductions to this problem can be found in [7, 28, 62, 75]. The interpolation problem has applications to other areas of mathematics, including splines [30] and coding theory [40, 57].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that because \(\mathbb{P}^{1} \times \mathbb{P}^{1}\) (the case investigated by Giuffrida, et al.) is isomorphic to the quadric surface \(\mathcal{Q}\) in \(\mathbb{P}^{3}\), this variation can also be viewed as studying the interpolation problem on hypersurfaces; the paper of Huizenga [66] considers similar questions

References

  1. A. Aramova, K. Crona, E. De Negri, Bigeneric initial ideals, diagonal subalgebras and bigraded Hilbert functions. J. Pure Appl. Algebra 150(3), 215–235 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. E. Ballico, Postulation of disjoint unions of lines and a few planes. J. Pure Appl. Algebra 215(4), 597–608 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Bocci, R. Miranda, Topics on interpolation problems in algebraic geometry. Rend. Sem. Mat. Univ. Politec. Torino 62(4), 279–334 (2004)

    MathSciNet  MATH  Google Scholar 

  4. E. Carlini, M.V. Catalisano, A.V. Geramita, Bipolynomial Hilbert functions. J. Algebra 324(4), 758–781 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. E. Carlini, M.V. Catalisano, A.V. Geramita, Subspace arrangements, configurations of linear spaces and the quadrics containing them. J. Algebra 362, 70–83 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. M.V. Catalisano, A.V. Geramita, A. Gimigliano, Ranks of tensors, secant varieties of Segre varieties and fat points. Linear Algebra Appl. 355(1), 263–285 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Chiantini, D. Sacchi, Segre functions in multiprojective spaces and tensor analysis. Trends Hist. Sci. (2014, to appear)

    Google Scholar 

  8. D. Cox, J. Little, D. O’Shea, Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra. Undergraduate Texts in Mathematics (Springer, New York, 1992)

    Google Scholar 

  9. D. Cox, A. Dickenstein, H. Schenck, A case study in bigraded commutative algebra, in Syzygies and Hilbert Functions. Lecture Notes in Pure and Applied Mathematics, vol. 254 (Chapman & Hall/CRC, Boca Raton, 2007), pp. 67–111

    Google Scholar 

  10. K. Crona, Standard bigraded Hilbert functions. Commun. Algebra 34(2), 425–462 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Eisenbud, The Geometry of Syzygies. A Second Course in Commutative Algebra and Algebraic Geometry. Graduate Texts in Mathematics, vol. 229 (Springer, New York, 2005)

    Google Scholar 

  12. D. Eisenbud, S. Popescu, Gale duality and free resolutions of ideals of points. Invent. Math. 136(2), 419–449 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. A.V. Geramita, Zero-dimensional schemes: singular curves and rational surfaces, in Zero-Dimensional Schemes (Ravello, 1992) (de Gruyter, Berlin, 1994), pp. 1–10

    Book  MATH  Google Scholar 

  14. A.V. Geramita, P. Maroscia, The ideal of forms vanishing at a finite set of points in \(\mathbb{P}^{n}\). J. Algebra 90(2), 528–555 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. A.V. Geramita, H. Schenck, Fat points, inverse systems, and piecewise polynomial functions. J. Algebra 204(1), 116–128 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. A.V. Geramita, P. Maroscia, L.G. Roberts, The Hilbert function of a reduced k-algebra. J. Lond. Math. Soc. (2) 28(3), 443–452 (1983)

    Google Scholar 

  17. A.V. Geramita, D. Gregory, L. Roberts, Monomial ideals and points in projective space. J. Pure Appl. Algebra 40(1), 33–62 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. A.V. Geramita, J. Migliore, L. Sabourin, On the first infinitesimal neighborhood of a linear configuration of points in \(\mathbb{P}^{2}\). J. Algebra 298(2), 563–611 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Gimigliano, Our thin knowledge of fat points, in The Curves Seminar at Queen’s, Vol. VI (Kingston, ON, 1989). Queen’s Papers in Pure and Applied Mathematics, vol. 83 (Queen’s University, Kingston, 1989), Exp. No. B, 50 pp.

    Google Scholar 

  20. S. Giuffrida, R. Maggioni, A. Ragusa, On the postulation of 0-dimensional subschemes on a smooth quadric. Pac. J. Math. 155(2), 251–282 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Giuffrida, R. Maggioni, A. Ragusa, Resolutions of generic points lying on a smooth quadric. Manuscripta Math. 91(4), 421–444 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. L. Gold, J. Little, H. Schenck, Cayley-Bacharach and evaluation codes on complete intersections. J. Pure Appl. Algebra 196(1), 91–99 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. H.T. Hà, Multigraded regularity, a ∗-invariant and the minimal free resolution. J. Algebra 310(1), 156–179 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Hansen, Linkage and codes on complete intersections. Appl. Algebra Eng. Commun. Comput. 14(3), 175–185 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. B. Harbourne, Problems and progress: a survey on fat points in \(\mathbb{P}^{2}\), in Zero-Dimensional Schemes and Applications (Naples, 2000) Queen’s Papers in Pure and Applied Mathematics, vol. 123 (Queen’s University, Kingston, 2002), pp. 85–132

    Google Scholar 

  26. R. Hartshorne, A. Hirschowitz, Droites en position générale dans l’espace projectif, in Algebraic Geometry (La Rábida, 1981). Lecture Notes in Mathematics, vol. 961 (Springer, Berlin, 1982), pp. 169–188

    Google Scholar 

  27. B. Hassett, Introduction to Algebraic Geometry (Cambridge University Press, Cambridge, 2007)

    Book  MATH  Google Scholar 

  28. A. Hirschowitz, C. Simpson, La résolution minimale de l’idéal d’un arrangement général d’un grand nombre de points dans \(\mathbb{P}^{n}\). Invent. Math. 126(3), 467–503 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Huizenga, Interpolation on surfaces in \(\mathbb{P}^{3}\). Trans. Am. Math. Soc. 365(2), 623–644 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Lorenzini, The minimal resolution conjecture. J. Algebra 156(1), 5–35 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  31. F.S. Macaulay, Some properties of enumeration in the theory of modular systems. Proc. Lond. Math. Soc. 26(1), 531–555 (1927)

    Article  MathSciNet  MATH  Google Scholar 

  32. D. Maclagan, G.G. Smith, Multigraded Castelnuovo-Mumford regularity. J. Reine Angew. Math. 571, 179–212 (2004)

    MathSciNet  MATH  Google Scholar 

  33. R. Miranda, Linear systems of plane curves. Not. Am. Math. Soc. 46(2), 192–201 (1999)

    MathSciNet  MATH  Google Scholar 

  34. I. Peeva, Graded Syzygies. Algebra and Applications, vol. 14 (Springer, London, 2011)

    Google Scholar 

  35. I. Peeva, M. Stillman, Open problems on syzygies and Hilbert functions. J. Commut. Algebra 1(1), 159–195 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. H. Schenck, Computational Algebraic Geometry. London Mathematical Society Student Texts, vol. 58 (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  37. J. Sidman, A. Van Tuyl, Multigraded regularity: syzygies and fat points. Beitr. Algebra Geom. 47(1), 67–87 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Authors

About this chapter

Cite this chapter

Guardo, E., Van Tuyl, A. (2015). Introduction. In: Arithmetically Cohen-Macaulay Sets of Points in P^1 x P^1. SpringerBriefs in Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-24166-1_1

Download citation

Publish with us

Policies and ethics