Skip to main content

Qualitative and Quantitative Proteomics Methods for the Analysis of the Anopheles gambiae Mosquito Proteome

  • Chapter
  • First Online:
Short Views on Insect Genomics and Proteomics

Abstract

Anopheles gambiae is the major African malaria vector. Insecticide and drug resistance highlight the need for novel malaria control strategies. A. gambiae exhibits daily (diel and/or circadian) rhythms in physiology and behavior that include flight, mating, sugar and blood-meal feeding, and oviposition. Olfaction is important for detecting blood-feeding hosts, sugar feeding sources, and oviposition sites. We previously reported on mRNA array-based changes in gene expression under light–dark cycle (diel) and constant dark (circadian) conditions. We were able to characterize 25 known or putative olfactory genes in female heads. We sought to follow up on these reported changes in gene expression and correlate them with expected changes in protein response. Here, we describe our recently developed methods and meta-level results for both qualitative and differential proteomics analyses of A. gambiae mosquitoes collected in a time-of-day-specific framework to assess temporal changes in protein abundance over the 24-h day. The traditional challenges associated with proteomics are amplified in an insect such as the mosquito, which contains a large amount of non-proteinaceous material associated with the cuticle and trachea and a high dynamic background of proteins associated with flight muscles and oxidative metabolism (e.g., myosin, glutathione S-transferases). We thus sought to use targeted, quantitative proteomics to directly measure differences in protein abundance in a time-of-day-dependent manner. We used multiple reaction monitoring (MRM), which has the advantage of being able to probe selected target lists with high sensitivity, wide dynamic range, and good/excellent reproducibility. We first characterized proteins in a qualitative format and subsequently examined subsets of specific proteins of interest in a high-fidelity quantifiable approach. Targeted quantitative multiple/single reaction monitoring (MRM/SRM) proteomics allowed for the measurement of changes in protein abundance in a time-of-day-specific manner over the 24-h diel cycle. Utilizing this accurate technique requires robust and reproducible protein/peptide preparation techniques in order to obtain consistent data. Here, we describe a technique using liquid N2 homogenization-based protein extraction and proteolytic digestion applied to multiple discrete tissues (whole heads, antennae, total head appendages, compound eyes, and bodies), with subsequent liquid chromatography/tandem mass spectrometry (LC/MS/MS)-based analysis of the resulting tryptic peptides. This technique is largely portable and should function well in any arthropod system with little modification. The results of our analyses are the generation of tissue-discrete determination of peptides, targeted quantitative analysis of peptides, and the deposition of datasets in VectorBase.org for use by the vector biology, arthropod, and proteomics research communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABC:

Ammonium bicarbonate, Ambic

BEH:

Ethylene-bridged hybrid

CID/CAD:

Collision-induced dissociation/collisionally activated dissociation

CV:

Coefficient of variation

DTT:

Dithiothreitol

EDTA:

Ethylenediaminetetraacetic acid

FASP:

Filter-aided sample prep

FDR:

False discovery rate

IAA:

Iodoacetamide

LC/MS/MS:

Liquid chromatography tandem mass spectrometry

MS-MS/MS:

Mass spectrometry tandem mass spectrometry

MRM/SRM:

Multiple reaction monitoring/selected reaction monitoring

NaDOC:

Sodium deoxycholate

OBP:

Odorant-binding protein

ORF:

Open reading frame

PCR:

Polymerase chain reaction

PMSF:

Phenylmethylsulfonyl fluoride

Q1, Q2, etc.:

First and second quadrupoles

QqQ:

Triple quadrupole

RT:

Retention time

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

TCEP:

Tris(2-carboxyethyl)phosphine hydrochloride

TFE:

2,2,2-Trifluoroethanol

THAs:

Total head appendages

TIC:

Total ion current

TOP8,10:

Top 8,10 precursor selection method

UHPLC:

Ultrahigh-performance liquid chromatography

XIC/EIC:

Extracted ion chromatogram

ZT:

Zeitgeber time

References

  1. Hood, B. L., Conrads, T. P., & Veenstra, T. D. (2006). Unravelling the proteome of formalin-fixed paraffin-embedded tissue. Briefings in Functional Genomics & Proteomics, 5, 169–175.

    Article  CAS  Google Scholar 

  2. Lee, J., Lei, Z., Watson, B. S., & Sumner, L. W. (2013). Sub-cellular proteomics of Medicago truncatula. Frontiers in Plant Science, 4, 112.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Nirmalan, N., Banks, R., & Van Eyk, J. E. (2013). Proteomic analysis of formalin fixed tissue. Proteomics Clinical Applications, 7, 215–216.

    Article  PubMed  Google Scholar 

  4. Paulo, J. A., Kadiyala, V., Brizard, S., et al. (2013). A proteomic comparison of formalin-fixed paraffin-embedded pancreatic tissue from autoimmune pancreatitis, chronic pancreatitis, and pancreatic cancer. Journal of Pancreas, 14, 405–414.

    Google Scholar 

  5. Shevchenko, A., Tomas, H., Havlis, J., et al. (2006). In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nature Protocols, 1, 2856–2860.

    Article  CAS  PubMed  Google Scholar 

  6. Pirmoradian, M., Budamgunta, H., Chingin, K., et al. (2013). Rapid and deep human proteome analysis by single-dimension shotgun proteomics. Molecular and Cellular Proteomics, 12, 3330–3338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wiśniewski, J. R., Zougman, A., Nagaraj, N., & Mann, M. (2009). Universal sample preparation method for proteome analysis. Nature Methods, 6, 359–362.

    Article  PubMed  Google Scholar 

  8. Chaerkady, R., Kelkar, D. S., Muthusamy, B., et al. (2011). A proteogenomic analysis of Anopheles gambiae using high-resolution Fourier transform mass spectrometry. Genome Research, 21, 1872–1881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rund, S. S. C., Bonar, N. A., Champion, M. M., et al. (2013). Daily rhythms in antennal protein and olfactory sensitivity in the malaria mosquito Anopheles gambiae. Scientific Reports, 3, 2494.

    Article  PubMed  PubMed Central  Google Scholar 

  10. malERA Consultative Group on Vector Control. (2011). A research agenda for malaria eradication: Vector control. Plos Medicine, 8, e1000401.

    Article  Google Scholar 

  11. Enayati, A., & Hemingway, J. (2010). Malaria management: Past, present, and future. Annual Review of Entomology, 55, 569–591.

    Article  CAS  PubMed  Google Scholar 

  12. Rund, S. S. C., Lee, S. J., Bush, B. R., & Duffield, G. E. (2012). Strain- and sex-specific differences in daily flight activity and the circadian clock of Anopheles gambiae mosquitoes. Journal of Insect Physiology, 58, 1609–1619.

    Google Scholar 

  13. Balmert, N. J., Rund, S. S. C., Ghazi, J. P., et al. (2014). Time-of-day specific changes in metabolic detoxification and insecticide resistance in the malaria mosquito Anopheles gambiae. Journal of Insect Physiology, 64, 30–39.

    Article  CAS  PubMed  Google Scholar 

  14. Clements, A. N. (1999). The biology of mosquitoes. Oxon: CABI Publ.

    Google Scholar 

  15. Gary, R. E., & Foster, W. A. (2006). Diel timing and frequency of sugar feeding in the mosquito Anopheles gambiae, depending on sex, gonotrophic state and resource availability. Medical and Veterinary Entomology, 20, 308–316.

    Article  PubMed  Google Scholar 

  16. Jones, M. D. R., & Gubbins, S. J. (1978). Changes in the circadian flight activity of the mosquito Anopheles gambiae in relation to insemination, feeding and oviposition. Physiological Entomology, 3, 213–220.

    Article  Google Scholar 

  17. Dunlap, J. C., Loros, J. J., & Decoursey, P. J. (2004). Chronobiology: Biological timekeeping. Sunderland: Sinauer Associates.

    Google Scholar 

  18. Rund, S. S., Gentile, J. E., & Duffield, G. E. (2013). Extensive circadian and light regulation of the transcriptome in the malaria mosquito Anopheles gambiae. BMC Genomics, 14, 218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rund, S. S. C., Hou, T. Y., Ward, S. M., et al. (2011). Genome-wide profiling of diel and circadian gene expression in the malaria vector Anopheles gambiae. Proceedings of the National Academy of Sciences of the United States of America, 108, E421–E430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bock, G. R., & Cardew, G. (1996). Olfaction in mosquito–host interactions (p. 342). New York: Wiley.

    Google Scholar 

  21. Takken, W., & Knols, B. G. (1999). Odor-mediated behavior of Afrotropical malaria mosquitoes. Annual Review of Entomology, 44, 131–157.

    Article  CAS  PubMed  Google Scholar 

  22. Shilov, I. V., Seymour, S. L., Patel, A. A., et al. (2007). The Paragon algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Molecular and Cellular Proteomics, 6, 1638–1655.

    Article  CAS  PubMed  Google Scholar 

  23. Li, Y., Champion, M. M., Sun, L., et al. (2012). Capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry as an alternative proteomics platform to ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry for samples of intermediate complexity. Analytical Chemistry, 84, 1617–1622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Washburn, M. P., Wolters, D., & Yates, J. R., 3rd. (2001). Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nature Biotechnology, 19, 242–247.

    Article  CAS  PubMed  Google Scholar 

  25. Wolters, D. A., Washburn, M. P., & Yates, J. R., 3rd. (2001). An automated multidimensional protein identification technology for shotgun proteomics. Analytical Chemistry, 73, 5683–5690.

    Article  CAS  PubMed  Google Scholar 

  26. Brunner, E., Ahrens, C. H., Mohanty, S., et al. (2007). A high-quality catalog of the Drosophila melanogaster proteome. Nature Biotechnology, 25, 576–583.

    Article  CAS  PubMed  Google Scholar 

  27. Djegbe, I., Cornelie, S., Rossignol, M., et al. (2011). Differential expression of salivary proteins between susceptible and insecticide-resistant mosquitoes of Culex quinquefasciatus. Plos One, 6, e17496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fang, Y., Feng, M., Han, B., et al. (2014). In-depth proteomics characterization of embryogenesis of the honey bee worker (Apis mellifera L.). Molecular and Cellular Proteomics, M114, 037846.

    Google Scholar 

  29. Hummon, A. B., Richmond, T. A., Verleyen, P., et al. (2006). From the genome to the proteome: Uncovering peptides in the Apis brain. Science, 314, 647–649.

    Article  CAS  PubMed  Google Scholar 

  30. Johnson, J. R., Florens, L., Carucci, D. J., & Yates, J. R. (2004). Proteomics in malaria. Journal of Proteome Research, 3(2), 296–306.

    Article  CAS  PubMed  Google Scholar 

  31. Mastrobuoni, G., Qiao, H., Iovinella, I., et al. (2013). A proteomic investigation of soluble olfactory proteins in Anopheles gambiae. Plos One, 8, e75162.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Ribeiro, J. M. C., Charlab, R., Pham, V. M., et al. (2004). An insight into the salivary transcriptome and proteome of the adult female mosquito Culex pipiens quinquefasciatus. Insect Biochemistry and Molecular Biology, 34, 543–563.

    Article  CAS  PubMed  Google Scholar 

  33. Dinglasan, R. R., Devenport, M., Florens, L., et al. (2009). The Anopheles gambiae adult midgut peritrophic matrix proteome. Insect Biochemistry and Molecular Biology, 39, 125–134.

    Article  CAS  PubMed  Google Scholar 

  34. Ubaida Mohien, C., Colquhoun, D. R., Mathias, D. K., et al. (2013). A bioinformatics approach for integrated transcriptomic and proteomic comparative analyses of model and non-sequenced anopheline vectors of human malaria parasites. Molecular and Cellular Proteomics, 12, 120–131.

    Article  PubMed  Google Scholar 

  35. Andrews, G. L., Dean, R. A., Hawkridge, A. M., & Muddiman, D. C. (2011). Improving proteome coverage on a LTQ-Orbitrap using design of experiments. Journal of the American Society for Mass Spectrometry, 22, 773–783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nagaraj, N., Kulak, N. A., Cox, J., et al. (2012). System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a bench top Orbitrap. Molecular and Cellular Proteomics, 11(3), M111.013722.

    Article  PubMed  Google Scholar 

  37. Desiere, F., Deutsch, E. W., King, N. L., et al. (2006). The peptide atlas project. Nucleic Acids Research, 34, D655–D658.

    Article  CAS  PubMed  Google Scholar 

  38. Anderson, L., & Hunter, C. L. (2006). Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Molecular and Cellular Proteomics, 5, 573–588.

    Article  CAS  PubMed  Google Scholar 

  39. Kuzyk, M. A., Smith, D., Yang, J., et al. (2009). Multiple reaction monitoring-based, multiplexed, absolute quantitation of 45 proteins in human plasma. Molecular and Cellular Proteomics, 8, 1860–1877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ludwig, C., Claassen, M., Schmidt, A., & Aebersold, R. (2012). Estimation of absolute protein quantities of unlabeled samples by selected reaction monitoring mass spectrometry. Molecular and Cellular Proteomics, 11(3), M111.013987.

    Article  PubMed  Google Scholar 

  41. Aebersold, R., Burlingame, A. L., & Bradshaw, R. A. (2013). Western blots versus selected reaction monitoring assays: Time to turn the tables? Molecular and Cellular Proteomics, 12, 2381–2382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chang, C.-Y., Picotti, P., Huettenhain, R., et al. (2011). Protein significance analysis in selected reaction monitoring (SRM) measurements. Molecular and Cellular Proteomics, 11(4), M111.014662.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Picotti, P., Clément-Ziza, M., Lam, H., et al. (2013). A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis. Nature, 494, 266–270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Aebersold, R. (2013). Method of the year 2012. Nature Methods, 10, 1–1.

    Google Scholar 

  45. Champion, M. M., Campbell, C. S., Siegele, D. A., et al. (2003). Proteome analysis of Escherichia coli K-12 by two-dimensional native-state chromatography and MALDI-MS. Molecular Microbiology, 47, 383–396.

    Article  CAS  PubMed  Google Scholar 

  46. Llarrull, L. I., Toth, M., Champion, M. M., & Mobashery, S. (2011). Activation of BlaR1 protein of methicillin-resistant Staphylococcus aureus, its proteolytic processing, and recovery from induction of resistance. Journal of Biological Chemistry, 286, 38148–38158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Picotti, P., Bodenmiller, B., Mueller, L. N., et al. (2009). Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell, 138, 795–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sun, L., Li, Y., Champion, M. M., et al. (2013). Capillary zone electrophoresis-multiple reaction monitoring from 100 pg of RAW 264.7 cell lysate digest. Analyst, 138, 3181–3188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schubert, O. T., Mouritsen, J., Ludwig, C., et al. (2013). The Mtb proteome library: A resource of assays to quantify the complete proteome of Mycobacterium tuberculosis. Cell Host and Microbe, 13, 602–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Deshusses, J. M. P., Burgess, J. A., Scherl, A., et al. (2003). Exploitation of specific properties of trifluoroethanol for extraction and separation of membrane proteins. Proteomics, 3, 1418–1424.

    Article  CAS  PubMed  Google Scholar 

  51. Stejskal, K., Potěšil, D., & Zdráhal, Z. (2013). Suppression of peptide sample losses in autosampler vials. Journal of Proteome Research, 12, 3057–3062.

    Article  CAS  PubMed  Google Scholar 

  52. Fujita, S. C., Inoue, H., Yoshioka, T., & Hotta, Y. (1987). Quantitative tissue isolation from Drosophila freeze-dried in acetone. The Biochemical Journal, 243, 97–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Matsumoto, H., O’Tousa, J. E., & Pak, W. L. (1982). Light-induced modification of Drosophila retinal polypeptides in vivo. Science, 217, 839–841.

    Article  CAS  PubMed  Google Scholar 

  54. Weigel, K. J., Jakimenko, A., Conti, B. A., et al. (2014). CAF-Secreted IGFBPs regulate breast cancer cell Anoikis. Molecular Cancer Research, 12, 855–866.

    Article  CAS  PubMed  Google Scholar 

  55. Olsen, J. V., de Godoy, L. M. F., Li, G., et al. (2005). Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Molecular and Cellular Proteomics, 4, 2010–2021.

    Article  CAS  PubMed  Google Scholar 

  56. Elias, J. E., & Gygi, S. P. (2007). Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nature Methods, 4, 207–214.

    Article  CAS  PubMed  Google Scholar 

  57. Elias, J. E., Haas, W., Faherty, B. K., & Gygi, S. P. (2005). Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations. Nature Methods, 2, 667–675.

    Article  CAS  PubMed  Google Scholar 

  58. Tang, W. H., Shilov, I. V., & Seymour, S. L. (2008). Nonlinear fitting method for determining local false discovery rates from decoy database searches. Journal of Proteome Research, 7, 3661–3667.

    Article  CAS  PubMed  Google Scholar 

  59. Addona, T. A., Abbatiello, S. E., Schilling, B., et al. (2009). Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. Nature Biotechnology, 27, 633–641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bertsch, A., Jung, S., Zerck, A., et al. (2010). Optimal de novo design of MRM experiments for rapid assay development in targeted proteomics. Journal of Proteome Research, 9, 2696–2704.

    Article  CAS  PubMed  Google Scholar 

  61. Gillette, M. A., & Carr, S. A. (2013). Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry. Nature Methods, 10, 28–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mani, D. R., Abbatiello, S. E., & Carr, S. A. (2012) Statistical characterization of multiple-reaction monitoring mass spectrometry (MRM-MS) assays for quantitative proteomics. BMC Bioinformatics, 13(Suppl 16), S9.

    Google Scholar 

  63. Carr, S. A., Abbatiello, S. E., Ackermann, B. L., et al. (2014). Targeted peptide measurements in biology and medicine: Best practices for mass spectrometry-based assay development using a fit-for-purpose approach. Molecular and Cellular Proteomics, 13, 907–917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. MacLean, B., Tomazela, D. M., Shulman, N., et al. (2010). Skyline: An open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics, 26, 966–968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kennedy, G. M., Hooley, G. C., Champion, M. M., et al. (2014). A novel ESX-1 locus reveals that surface-associated ESX-1 substrates mediate virulence in Mycobacterium marinum. Journal of Bacteriology, 196, 1877–1888.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Li, Y., Wojcik, R., Dovichi, N. J., & Champion, M. M. (2012). Quantitative multiple reaction monitoring of peptide abundance introduced via a capillary zone electrophoresis-electrospray interface. Analytical Chemistry, 84, 6116–6121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gooyit, M., Peng, Z., Wolter, W. R., et al. (2014). A chemical biological strategy to facilitate diabetic wound healing. ACS Chemical Biology, 9, 105–110.

    Article  CAS  PubMed  Google Scholar 

  68. Fan, J.-Y., Preuss, F., Muskus, M. J., et al. (2009). Drosophila and vertebrate casein kinase Idelta exhibits evolutionary conservation of circadian function. Genetics, 181, 139–152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Merlin, C., Gegear, R. J., & Reppert, S. M. (2009). Antennal circadian clocks coordinate sun compass orientation in migratory monarch butterflies. Science, 325, 1700–1704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Domon, B. (2012). Considerations on selected reaction monitoring experiments: Implications for the selectivity and accuracy of measurements. Proteomics Clinical Applications, 6, 609–614.

    Article  CAS  PubMed  Google Scholar 

  71. Gallien, S., Bourmaud, A., Kim, S. Y., & Domon, B. (2014). Technical considerations for large-scale parallel reaction monitoring analysis. Journal of Proteomics, 100, 147–159.

    Article  CAS  PubMed  Google Scholar 

  72. Loziuk, P. L., Wang, J., Li, Q., et al. (2013). Understanding the role of proteolytic digestion on discovery and targeted proteomic measurements using liquid chromatography tandem mass spectrometry and design of experiments. Journal of Proteome Research, 12, 5820–5829.

    Article  CAS  PubMed  Google Scholar 

  73. Burgess, M. W., Keshishian, H., Mani, D. R., et al. (2014). Simplified and efficient quantification of low-abundance proteins at very high multiplex via targeted mass spectrometry. Molecular and Cellular Proteomics, 13, 1137–1149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Thakur, S. S., Geiger, T., Chatterjee, B., et al. (2011). Deep and highly sensitive proteome coverage by LC-MS/MS without prefractionation. Molecular and Cellular Proteomics, 10(8), M110.003699.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Albertin, W., Langella, O., Joets, J., et al. (2009). Comparative proteomics of leaf, stem, and root tissues of synthetic Brassica napus. Proteomics, 9, 793–799.

    Article  CAS  PubMed  Google Scholar 

  76. Rhee, H.-W., Zou, P., Udeshi, N. D., et al. (2013). Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science, 339, 1328–1331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhou, C., Simpson, K. L., Lancashire, L. J., et al. (2012). Statistical considerations of optimal study design for human plasma proteomics and biomarker discovery. Journal of Proteome Research, 11, 2103–2113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kalume, D. E., Peri, S., Reddy, R., et al. (2005). Genome annotation of Anopheles gambiae using mass spectrometry-derived data. BMC Genomics, 6, 128.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Megy, K., Emrich, S. J., Lawson, D., et al. (2012). VectorBase: Improvements to a bioinformatics resource for invertebrate vector genomics. Nucleic Acids Research, 40, D729–734.

    Article  CAS  PubMed  Google Scholar 

  80. Pitts, R. J., Rinker, D. C., Jones, P. L., et al. (2011). Transcriptome profiling of chemosensory appendages in the malaria vector Anopheles gambiae reveals tissue- and sex-specific signatures of odor coding. BMC Genomics, 12, 271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Leal, W. S. (2013). Odorant reception in insects: Roles of receptors, binding proteins, and degrading enzymes. Annual Review of Entomology, 58, 373–391.

    Article  CAS  PubMed  Google Scholar 

  82. Das, S., & Dimopoulos, G. (2008). Molecular analysis of photic inhibition of blood-feeding in Anopheles gambiae. BMC Physiology, 8, 23.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Mauvoisin, D., Wang, J., Jouffe, C., et al. (2014). Circadian clock-dependent and -independent rhythmic proteomes implement distinct diurnal functions in mouse liver. Proceedings of the National Academy of Sciences of the United States of America, 111, 167–172.

    Article  CAS  PubMed  Google Scholar 

  84. Robles, M. S., & Mann, M. (2013). Proteomic approaches in circadian biology. Handbook of Experimental Pharmacology, 217, 389–407.

    Google Scholar 

  85. Dresen, S., Ferreirós, N., Gnann, H., et al. (2010). Detection and identification of 700 drugs by multi-target screening with a 3200 Q TRAP LC-MS/MS system and library searching. Analytical and Bioanalytical Chemistry, 396, 2425–2434.

    Article  CAS  PubMed  Google Scholar 

  86. Cázares-Raga, F. E., Chávez-Munguía, B., González-Calixto, C., et al. (2014). Morphological and proteomic characterization of midgut of the malaria vector Anopheles albimanus at early time after a blood feeding. Journal of Proteomics, 111, 100–12.87.

    Article  PubMed  Google Scholar 

  87. Dwivedi, S. B., Muthusamy, B., Kumar, P., et al. (2014). Brain proteomics of Anopheles gambiae. OMICS, 18(7), 421–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by grants (to GED) from Eck Institute for Global Health and the Center for Rare and Neglected Diseases, University of Notre Dame (UND), and the Indiana Clinical Translational Sciences Institute, funded in part by a grant (UL1TR001108) from the National Institutes of Health, National Center for Advancing Translational Sciences, Clinical and Translational Sciences Award, and NIGMS (R01-GM087508). We thank B. Boggess and M. Joyce and the UND Mass Spectrometry & Proteomics Facility (MSPF) for their ongoing support and assistance with proteomics research, J. Ghazi for his assistance with sample preparation, and the editors for their careful reading and critique of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giles E. Duffield .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Champion, M.M., Sheppard, A.D., Rund, S.S.C., Freed, S.A., O’Tousa, J.E., Duffield, G.E. (2016). Qualitative and Quantitative Proteomics Methods for the Analysis of the Anopheles gambiae Mosquito Proteome. In: Raman, C., Goldsmith, M., Agunbiade, T. (eds) Short Views on Insect Genomics and Proteomics. Entomology in Focus, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-24244-6_2

Download citation

Publish with us

Policies and ethics