Skip to main content

GPGPU Implementation of a Spiking Neuronal Circuit Performing Sparse Recoding

  • Conference paper
  • First Online:
Computational Intelligence Methods for Bioinformatics and Biostatistics (CIBB 2014)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 8623))

Abstract

Modeling and simulation techniques have been used extensively to study the complexities of brain circuits. Simulations of bio-realistic networks consisting of large number of neurons require massive computational power when they are designed to provide real-time responses in millisecond scale. A network model of cerebellar granular layer was developed and simulated here on Graphic Processing Units (GPU) which delivered a high compute capacity at low cost. We used a mathematical model namely, Adaptive Exponential leaky integrate-and-fire (AdEx) equations to model the different types of neurons in the cerebellum. The hypothesis relating spatiotemporal information processing in the input layer of the cerebellum and its relations to sparse activation of cell clusters was evaluated. The main goal of this paper was to understand the computational efficiency and scalability issues while implementing a large-scale microcircuit consisting of millions of neurons and synapses. The results suggest efficient scale-up based on pleasantly parallel modes of operations allows simulations of large-scale spiking network models for cerebellum-like network circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hines, M.L., Carnevale, N.T.: The NEURON simulation environment. Neural Comput. 9(6), 1179–1209 (1997)

    Article  Google Scholar 

  2. Bower, J.M.: GEneral NEural SImulation System (2003)

    Google Scholar 

  3. Hines, M.L., Carnevale, N.T.: Translating network models to parallel hardware in NEURON, 169(2) (2008)

    Google Scholar 

  4. Goddard, N.H., Hood, G.: Large Scale simulation using parallel GENESIS. In: The Book of Genesis, pp. 349–380 (1996)

    Google Scholar 

  5. Plesser, H.E., Eppler, J.M., Morrison, A., Diesmann, M., Gewaltig, M.-O.: Efficient parallel simulation of large-scale neuronal networks on clusters of multiprocessor computers. In: Kermarrec, A.-M., Bougé, L., Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641, pp. 672–681. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Delorme, A., Thorpe, S.J.: SpikeNET: An Event-driven Simulation Package for Modeling Large Networks of Spiking Neurons. Netw. Comput. Neural Syst. 14, 613–627 (2003)

    Article  Google Scholar 

  7. Bernhard, F.: Spiking Neurons on GPUs (2005)

    Google Scholar 

  8. Nageswaran, J.M., Dutt, N., Krichmar, J.L., Nicolau, A., Veidenbaum, A.: Efficient simulation of large-scale Spiking Neural Networks using CUDA graphics processors. In: 2009 Int. Jt. Conf. Neural Networks, pp. 2145–2152, June 2009

    Google Scholar 

  9. Igarashi, J., Shouno, O., Fukai, T., Tsujino, H.: Real-time simulation of a spiking neural network model of the basal ganglia circuitry using general purpose computing on graphics processing units. Neural Netw. 24(9), 950–960 (2011)

    Article  Google Scholar 

  10. Yamazaki, T., Igarashi, J.: Realtime cerebellum: A large-scale spiking network model of the cerebellum that runs in realtime using a graphics processing unit. Neural Netw., February 2013

    Google Scholar 

  11. D’Angelo, E.: Neural circuits of the cerebellum: hypothesis for function. J. Integr. Neurosci. 10(3), 317–352 (2011)

    Article  Google Scholar 

  12. Medini, C., Nair, B., D’Angelo, E., Naldi, G., Diwakar, S.: Modeling spike-train processing in the cerebellum granular layer and changes in plasticity reveal single neuron effects in neural ensembles. Comput. Intell. Neurosci. 2012, 359529 (2012)

    Google Scholar 

  13. Nieus, T., Sola, E., Mapelli, J., Saftenku, E., Rossi, P., D’Angelo, E.: LTP regulates burst initiation and frequency at mossy fiber-granule cell synapses of rat cerebellum: experimental observations and theoretical predictions. J. Neurophysiol. 95(2), 686–699 (2006)

    Article  Google Scholar 

  14. Diwakar, S., Magistretti, J., Goldfarb, M., Naldi, G., D’Angelo, E.: Axonal Na+ channels ensure fast spike activation and back-propagation in cerebellar granule cells. J. Neurophysiol. 101(2), 519–532 (2009)

    Article  Google Scholar 

  15. Solinas, S., Forti, L., Cesana, E., Mapelli, J., De Schutter, E., D’Angelo, E.: Computational reconstruction of pacemaking and intrinsic electroresponsiveness in cerebellar golgi cells, vol. 1, December 2007

    Google Scholar 

  16. Solinas, S., Nieus, T., D’Angelo, E.: A realistic large-scale model of the cerebellum granular layer predicts circuit spatio-temporal filtering properties. Front. Cell. Neurosci. 4, 12 (2010)

    Google Scholar 

  17. Brette, R., Gerstner, W.: Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J. Neurophysiol. 94(5), 3637–3642 (2005)

    Article  Google Scholar 

  18. Naud, R., Marcille, N., Clopath, C., Gerstner, W.: Firing patterns in the adaptive exponential integrate-and-fire model. Biol. Cybern. 99(4–5), 335–347 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bengtsson, F., Jörntell, H.: Sensory transmission in cerebellar granule cells relies on similarly coded mossy fiber inputs. Proc. Natl. Acad. Sci. U.S.A. 106(7), 2389–2394 (2009)

    Article  Google Scholar 

  20. David, J.H., McCormick, A., Wang, Z.: Neurotransmitter Control of Neocortical Neuronal Activity and Excitability. Cereb. Cortex 3(5), 387–398 (1993)

    Article  Google Scholar 

  21. Rossi, D.J., Hamann, M.: Spillover-Mediated Transmission at Inhibitory Synapses Promoted by High Affinity α 6 Subunit GABA A Receptors and Glomerular Geometry. Neuron 20, 783–795 (1998)

    Article  Google Scholar 

  22. Purve, D.: Neuroscience. Sinauer Associates, Inc., Sunderland (2004)

    Google Scholar 

  23. D’Angelo, E., Solinas, S., Mapelli, J., Gandolfi, D., Mapelli, L., Prestori, F.: The cerebellar Golgi cell and spatiotemporal organization of granular layer activity. Front. Neural Circuits 7, 93 (2013)

    Google Scholar 

  24. Solinas, S., Nieus, T., D’Angelo, E., Bower, J.M.: A realistic large-scale model of the cerebellum granular layer predicts circuit spatio-temporal filtering properties, 4, 1–17, May 2010

    Google Scholar 

  25. Forti, L., Cesana, E., Mapelli, J., D’Angelo, E.: Ionic mechanisms of autorhythmic firing in rat cerebellar Golgi cells. J. Physiol. 574(Pt 3), 711–729 (2006)

    Google Scholar 

  26. D’Angelo, E., De Filippi, G., Rossi, P., Taglietti, V., Liu, A., Regehr, W.G., Maejima, T., Wollenweber, P., Teusner, L.U.C., Noebels, J.L., Herlitze, S., Mark, M.D., Brackenbury, W.J., Calhoun, J.D., Chen, C., Miyazaki, H., Nukina, N., Oyama, F., Ranscht, B., Isom, L.L., Filippi, G.D.E.: Ionic Mechanism of Electroresponsiveness in Cerebellar Granule Cells Implicates the Action of a Persistent Sodium Current Ionic Mechanism of Electroresponsiveness in Cerebellar Granule Cells Implicates the Action of a Persistent Sodium Current. J. Neurophysiol., 493–503 (1998)

    Google Scholar 

  27. Mapelli, J., D’Angelo, E.: The spatial organization of long-term synaptic plasticity at the input stage of cerebellum. J. Neurosci. 27(6), 1285–1296 (2007)

    Article  Google Scholar 

  28. Jonathan Mapelli, E.D., Gandolfi, D.: Combinatorial Responses Controlled by Synaptic Inhibition in the Cerebellum Granular Layer. J. Neurophysiol. 103(1), 250–261 (2010)

    Article  Google Scholar 

  29. Hwu, W.W., Kirk, D.B.: Programming Massively Parallel Processors: A Hands-on Approach. Morgan Kaufmann (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjusha Nair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Nair, M., Nair, B., Diwakar, S. (2015). GPGPU Implementation of a Spiking Neuronal Circuit Performing Sparse Recoding. In: DI Serio, C., Liò, P., Nonis, A., Tagliaferri, R. (eds) Computational Intelligence Methods for Bioinformatics and Biostatistics. CIBB 2014. Lecture Notes in Computer Science(), vol 8623. Springer, Cham. https://doi.org/10.1007/978-3-319-24462-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24462-4_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24461-7

  • Online ISBN: 978-3-319-24462-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics