Skip to main content

Fundamentals of Electrochemistry, Corrosion and Corrosion Protection

  • Chapter
  • First Online:
Soft Matter at Aqueous Interfaces

Abstract

This chapter introduces the basics of electrochemistry, with a focus on electron transfer reactions. We will show that the electrode potential formed when a metal is immersed in a solution is most of the time not an equilibrium potential, but a mixed potential in a stationary state. This mixed potential formation is the basis of corrosion of metals in aqueous solutions. Organic coatings are introduced as protecting agents, and several types of coatings are discussed: classical passive coatings, and active coatings as modern developments. Three electrochemical techniques, which are commonly used to asses the protecting properties of coatings, are shortly introduced as well: linear polarisation measurements, electrochemical impedance spectroscopy, and scanning Kelvin probe measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An alternative approach dumps the \( \eta^{2} \) dependence into the transfer coefficients \( \alpha_{{{\kern 1pt} c{\kern 1pt} }} \) and \( \alpha_{{{\kern 1pt} a{\kern 1pt} }} \) by making them potential-dependent.

  2. 2.

    In the units here, the electrode area dependence has been removed, which is critical for comparison of different coatings. As \( C \propto A \), a comparison of C/A in F m−2 is independent of electrode area. Likewise, as \( R \propto 1/A \), R A with units of \( \varOmega \) m2 is independent of electrode area.

References

  1. C.M.A. Brett, A.M.O. Brett. Electrochemistry—Principles, Methods, and Applications (Oxford University Press, Oxford, 1993)

    Google Scholar 

  2. A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications (Wiley, New York, 2001)

    Google Scholar 

  3. C.H. Hamann, A. Hamnett, W. Vielstich. Electrochemistry (Wiley, Weinheim, 1998)

    Google Scholar 

  4. Helmut Kaesche, Corrosion of Metals: Physicochemical Principles and Current Problems (Springer, Berlin, 2003)

    Book  Google Scholar 

  5. R.W. Revie (ed.), Uhlig’s Corrosion Handbook, 3rd edn. (Wiley, Hoboken, 2011)

    Google Scholar 

  6. D.F. Evans, H. Wennerström. The Colloidal Domain (Wiley, New York, 1999)

    Google Scholar 

  7. Tosaka. https://en.wikipedia.org/wiki/File:Electric_double-layer_%28BMD_model%29_NT.PNG, August 2008

  8. J. Lyklema, Fundamentals of Interface and Colloid Science, vol. 2—Solid-Liquid Interfaces (Academic Press, San Diego, 1995)

    Google Scholar 

  9. A. Erbe, K. Tauer, R. Sigel, Ion distribution around electrostatically stabilized polystyrene latex particles studied by ellipsometric light scattering. Langmuir 23, 452–459 (2007)

    Article  Google Scholar 

  10. R. Okamoto, A. Onuki, Charged colloids in an aqueous mixture with a salt. Phys. Rev. E 84, 051401 (2011)

    Article  ADS  Google Scholar 

  11. W. Dreyer, C. Guhlke, M. Landstorfer, A mixture theory of electrolytes containing solvation effects. Electrochem. Commun. 43, 75–78 (2014)

    Article  Google Scholar 

  12. J. Lyklema, Quest for ionion correlations in electric double layers and overcharging phenomena. Adv. Colloid Interface Sci. 147–148, 205–213 (2009)

    Article  Google Scholar 

  13. R.R. Netz, H. Orland, Beyond Poisson-Boltzmann: Fluctuation effects and correlation functions. Eur. Phys. J. E 1, 203–214 (2000)

    Article  Google Scholar 

  14. R.R. Netz, Static van der Waals interactions in electrolytes. Eur. Phys. J. E 5, 189–205 (2001)

    Article  Google Scholar 

  15. S. Trasatti, The “absolute” electrode potential—the end of the story. Electrochim. Acta 35, 269–271 (1990)

    Article  Google Scholar 

  16. W.M. Haynes (ed.), Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2014)

    Google Scholar 

  17. Carl Wagner, Wilhelm Traud, Über die Deutung von Korrosionsvorgängen durch Überlagerung von elektrochemischen Teilvorgängen und über die Potentialbildung an Mischelektroden. Z. Elektrochem. Angew. Phys. Chem. 44, 391–402 (1938)

    Google Scholar 

  18. C.H. Bamford, R.G. Compton (eds.), Electrode Kinetics: Principles and Methodology (Elsevier, Amsterdam, 1986)

    Google Scholar 

  19. T.J. Kemp, Southampton Electrochemistry Group—Instrumental Methods in Electrochemistry (Ellis Horwood, Chichester, 1985)

    Google Scholar 

  20. M. Stern, A.L. Geary, Electrochemical polarization: I. A theoretical analysis of the shape of polarization curves. J. Electrochem. Soc. 104, 56–63 (1957)

    Article  Google Scholar 

  21. R.A. Marcus, Electron transfer reactions in chemistry. Theory and experiment. Rev. Mod. Phys. 65, 599–610 (1993)

    Article  ADS  Google Scholar 

  22. D.D. Macdonald, Reflections on the history of electrochemical impedance spectroscopy. Electrochim. Acta 51, 1376–1388 (2006)

    Article  Google Scholar 

  23. A. Battistel, F. La Mantia, Nonlinear analysis: the intermodulated differential immittance spectroscopy. Anal. Chem. 85, 6799–6805 (2013)

    Article  Google Scholar 

  24. J.W. Schultze, A.W. Hassel, in Encyclopedia of Electrochemistry. Passivity of Metals, Alloys and Semiconductors, vol 4 (Wiley, Weinheim, 2007), pp. 216–235

    Google Scholar 

  25. S.-L. Wu, M.E. Orazem, B. Tribollet, V. Vivier, The influence of coupled faradaic and charging currents on impedance spectroscopy. Electrochim. Acta 131, 3–12 (2014)

    Article  Google Scholar 

  26. M.E. Orazem, B. Tribollet, Electrochemical Impedance Spectroscopy (Wiley, Hoboken, 2008)

    Google Scholar 

  27. E. Barsoukov, JR Macdonald, Impedance Spectroscopy—Theory, Experiment and Applications (Wiley, Hoboken, 2005)

    Google Scholar 

  28. M. Stratmann, The investigation of the corrosion properties of metals, covered with adsorbed electrolyte layers—a new experimental technique. Corros. Sci. 27, 869–872 (1987)

    Article  Google Scholar 

  29. S. Yee, R.A. Oriani, M. Stratmann, Application of a Kelvin microprobe to the corrosion of metals in humid atmospheres. J. Electrochem. Soc. 138, 55–61 (1991)

    Google Scholar 

  30. K. Wapner, B. Schoenberger, M. Stratmann, G. Grundmeier, Height-regulating scanning kelvin probe for simultaneous measurement of surface topology and electrode potentials at buried polymer/metal interfaces. J. Electrochem. Soc. 152, E114–E122 (2005)

    Article  Google Scholar 

  31. M. Stratmann, H. Streckel, On the atmospheric corrosion of metals which are covered with thin electrolyte layers—I. Verification of the experimental technique. Corros. Sci. 30, 681–696 (1990)

    Article  Google Scholar 

  32. M. Stratmann, H. Streckel, On the atmospheric corrosion of metals which are covered with thin electrolyte layers—II. Experimental results. Corros. Sci. 30, 697–714 (1990)

    Article  Google Scholar 

  33. M. Stratmann, H. Streckel, K.T. Kim, S. Crockett, On the atmospheric corrosion of metals which are covered with thin electrolyte layers-III. The measurement of polarisation curves on metal surfaces which are covered by thin electrolyte layers. Corros. Sci. 30, 715–734 (1990)

    Article  Google Scholar 

  34. M. Stratmann, R. Feser, A. Leng, Corrosion protection by organic films. Electrochim. Acta 39, 1207–1214 (1994)

    Article  Google Scholar 

  35. M. Stratmann, A. Leng, W. Fürbeth, H. Streckel, H. Gehmecker, K.-H. Große-Brinkhaus, The scanning Kelvin probe; a new technique for the in situ analysis of the delamination of organic coatings. Prog. Org. Coat. 27, 261–267 (1996)

    Article  Google Scholar 

  36. H. Baumgärtner, H.D. Liess, Micro Kelvin probe for local work‐function measurements. Rev. Sci. Instr. 59, 802–805 (1988)

    Google Scholar 

  37. M.F. Becker, A.F. Stewart, J.A. Kardach, A.H. Guenther, Surface charging in laser damage to dielectric surfaces and thin films. Appl. Opt. 26, 805–812 (1987)

    Article  ADS  Google Scholar 

  38. D. Mao, A. Kahn, M. Marsi, G. Margaritondo, Synchrotron-radiation-induced surface photovoltage on gaas studied by contact-potential-difference measurements. Phys. Rev. B 42, 3228–3230 (1990)

    Article  ADS  Google Scholar 

  39. P. Chiaradia, J.E. Bonnet, M. Fanfoni, C. Goletti, G. Lampel, Schottky barrier and surface photovoltage induced by synchrotron radiation in GaP(110)/Ag. Phys. Rev. B 47, 13520–13526 (1993)

    Article  ADS  Google Scholar 

  40. H. Ren, H. Sinha, A. Sehgal, M.T. Nichols, G.A. Antonelli, Y. Nishi, J.L. Shohet, Surface potential due to charge accumulation during vacuum ultraviolet exposure for high-k and low-k dielectrics. Appl. Phys. Lett. 97, 072901 (2010)

    Article  ADS  Google Scholar 

  41. J.L. Lauer, J.L. Shohet, Surface potential measurements of vacuum ultraviolet irradiated Al2O3, Si3N4, and SiO2. IEEE Trans. Plasma Sci. 33, 248–249 (2005)

    Article  ADS  Google Scholar 

  42. B. Salgin, D. Pontoni, D. Vogel, H. Schroder, P. Keil, M. Stratmann, H. Reichert, M. Rohwerder, Chemistry-dependent x-ray-induced surface charging. Phys. Chem. Chem. Phys. 16, 22255–22261 (2014)

    Article  Google Scholar 

  43. A. Leng, H. Streckel, M. Stratmann, The delamination of polymeric coatings from steel. Part 1: calibration of the Kelvin probe and basic delamination mechanism. Corros. Sci. 41, 547–578 (1998)

    Google Scholar 

  44. A. Leng, H. Streckel, M. Stratmann, The delamination of polymeric coatings from steel. Part 2: first stage of delamination, effect of type and concentration of cations on delamination, chemical analysis of the interface. Corros. Sci. 41, 579–597 (1998)

    Article  Google Scholar 

  45. A. Leng, H. Streckel, K. Hofmann, M. Stratmann, The delamination of polymeric coatings from steel. Part 3: effect of the oxygen partial pressure on the delamination reaction and current distribution at the metal/polymer interface. Corros. Sci. 41, 599–620 (1998)

    Article  Google Scholar 

  46. G.S. Frankel, M. Stratmann, M. Rohwerder, A. Michalik, B. Maier, J. Dora, M. Wicinski, Potential control under thin aqueous layers using a Kelvin probe. Corros. Sci. 49, 2021–2036 (2007)

    Article  Google Scholar 

  47. G. Grundmeier, W. Schmidt, M. Stratmann, Corrosion protection by organic coatings: electrochemical mechanism and novel methods of investigation. Electrochim. Acta 45, 2515–2533 (2000)

    Article  Google Scholar 

  48. G. Williams, H.N. McMurray, Polyaniline inhibition of filiform corrosion on organic coated AA2024-T3. Electrochim. Acta 54, 4245–4252 (2009)

    Google Scholar 

  49. R. Posner, P.R. Sundel, T. Bergman, P. Roose, M. Heylen, G. Grundmeier, P. Keil, UV-curable polyester acrylate coatings: barrier properties and ion transport kinetics along polymer/metal interfaces. J. Electrochem. Soc. 158, C185–C193 (2011)

    Article  Google Scholar 

  50. G. Frankel, M. Rohwerder, in Encyclopedia of Electrochemistry. Electrochemical Techniques for Corrosion, vol 4 (Wiley, Weinheim, Germany, 2007), pp. 687–723

    Google Scholar 

  51. D. Iqbal, J. Rechmann, A. Sarfraz, A. Altin, G. Genchev, A. Erbe, Synthesis of ultrathin poly(methyl methacrylate) model coatings bound via organosilanes to zinc and investigation of their delamination kinetics. ACS Appl. Mater. Interfaces 6, 18112–18121 (2014)

    Article  Google Scholar 

  52. N.W. Khun, G.S. Frankel, Effects of surface roughness, texture and polymer degradation on cathodic delamination of epoxy coated steel samples. Corros. Sci. 67, 152–160 (2013)

    Article  Google Scholar 

  53. D. Iqbal, R.S. Moirangthem, A. Bashir, A. Erbe, Study of polymer coating delamination kinetics on zinc modified with zinc oxide of different morphologies. Mater. Corros. 65, 370–375 (2014)

    Google Scholar 

  54. A. Goldschmidt, H. Streitberger, BASF-Handbuch Lackiertechnik (Vincentz, Hannover, 2002)

    Google Scholar 

  55. B. Tieke, Makromolekulare Chemie (Wiley, Weinheim, 1997)

    Google Scholar 

  56. D. Braun, H. Cherdron, H. Ritter, Praktikum der Makromolekularen Stoffe (Wiley, Weinheim, 1999)

    Google Scholar 

  57. G. Grundmeier, A. Simões, in Encyclopedia of Electrochemistry. Corrosion Protection by Organic Coatings, vol 4 (Wiley, Weinheim, Germany, 2007), pp. 500–566

    Google Scholar 

  58. F. Deflorian, S. Rossi, M. Fedel, Organic coatings degradation: comparison between natural and artificial weathering. Corros. Sci. 50, 2360–2366 (2008)

    Article  Google Scholar 

  59. E.P.M. van Westing, G.M. Ferrari, J.H.W. de Wit, The determination of coating performance with impedance measurements—III. In situ determination of loss of adhesion. Corros. Sci. 36, 979–994 (1994)

    Article  Google Scholar 

  60. E.P.M. van Westing, G.M. Ferrari, J.H.W. de Wit, The determination of coating performance with impedance measurements-I. Coating polymer properties. Corros. Sci. 34, 1511–1530 (1993)

    Google Scholar 

  61. J.R. Scully, S.T. Hensley, Lifetime prediction for organic coatings on steel and a magnesium alloy using electrochemical impedance methods. Corrosion 50, 705–716 (1994)

    Article  Google Scholar 

  62. F. Mansfeld, Use of electrochemical impedance spectroscopy for the study of corrosion protection by polymer coatings. J. Appl. Electrochem. 25, 187–202 (1995)

    Google Scholar 

  63. D.M. Brasher, A.H. Kingsbury, Electrical measurements in the study of immersed paint coatings on metal. I. Comparison between capacitance and gravimetric methods of estimating water-uptake. J. Appl. Chem. 4, 62–72 (1954)

    Google Scholar 

  64. R. Posner, K. Wapner, S. Amthor, K.J. Roschmann, G. Grundmeier, Electrochemical investigation of the coating/substrate interface stability for styrene/acrylate copolymer films applied on iron. Corros. Sci. 52, 37–44 (2010)

    Article  Google Scholar 

  65. B.R. Hinderliter, S.G. Croll, Simulation of transient electrochemical impedance spectroscopy due to water uptake or oxide growth. Electrochim. Acta 54, 5344–5352 (2009)

    Article  Google Scholar 

  66. V. La Saponara, Environmental and chemical degradation of carbon/epoxy and structural adhesive for aerospace applications: Fickian and anomalous diffusion, Arrhenius kinetics. Compos. Struct. 93, 2180–2195 (2011)

    Article  Google Scholar 

  67. B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, M. Musiani, Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochim. Acta 55, 6218–6227 (2010)

    Article  Google Scholar 

  68. M.R.S. Abouzari, F. Berkemeier, G. Schmitz, D. Wilmer, On the physical interpretation of constant phase elements. Solid State Ionics 180, 922–927 (2009)

    Google Scholar 

  69. U. Stimming, J.W. Schultze, The capacity of passivated iron electrodes and the band structure of the passive layer. Ber. Bunsenges. 80, 1297–1302 (1976)

    Article  Google Scholar 

  70. U. Stimming, J.W. Schultze, A semiconductor model of the passive layer on iron electrodes and its application to electrochemical reactions. Electrochim. Acta 24, 859–869 (1979)

    Article  Google Scholar 

  71. S. Yee, R.A. Oriani, M. Stratmann, Application of a Kelvin microprobe to the corrosion of metals in humid atmospheres. J. Electrochem. Soc. 138, 55–61 (1991)

    Google Scholar 

  72. H. Leidheiser Jr., W. Wang, L. Igetoft, The mechanism for the cathodic delamination of organic coatings from a metal surface. Prog. Org. Coat. 11, 19–40 (1983)

    Google Scholar 

  73. S. Nayak, P.U. Biedermann, M. Stratmann, A. Erbe, A mechanistic study of the electrochemical oxygen reduction on the model semiconductor n-Ge(100) by ATR-IR and DFT. Phys. Chem. Chem. Phys. 15, 5771–5781 (2013)

    Google Scholar 

  74. S. Nayak, P.U. Biedermann, M. Stratmann, A. Erbe, In situ infrared spectroscopic investigation of intermediates in the electrochemical oxygen reduction on n-Ge (100) in alkaline perchlorate and chloride electrolyte. Electrochim. Acta 106, 472–482 (2013)

    Google Scholar 

  75. W. Fürbeth, M. Stratmann, The delamination of polymeric coatings from electrogalvanised steel—a mechanistic approach. Part 1: delamination from a defect with intact zinc layer. Corros. Sci. 43, 207–227 (2001)

    Article  Google Scholar 

  76. W. Fürbeth, M. Stratmann, The delamination of polymeric coatings from electrogalvanized steel-a mechanistic approach. Part 2: delamination from a defect down to steel. Corros. Sci. 43, 229–241 (2001)

    Article  Google Scholar 

  77. W. Fürbeth, M. Stratmann, The delamination of polymeric coatings from electrogalvanized steel–a mechanistic approach.: Part 3: delamination kinetics and influence of CO2. Corros. Sci. 43, 243–254 (2001)

    Article  Google Scholar 

  78. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions. (National Association of Corrosion Engineers/Centre Belge d’Etude de la Corrosion CEBELCOR, Houston/Bruxelles, 1974)

    Google Scholar 

  79. D. Iqbal, A. Kostka, A. Bashir, A. Sarfraz, Y. Chen, A.D. Wieck, A. Erbe, Sequential growth of zinc oxide nanorod arrays at room temperature via a corrosion process: application in visible light photocatalysis. ACS Appl. Mater. Interfaces 6, 18728–18734 (2014)

    Article  Google Scholar 

  80. S.J. Garcia, H.R. Fischer, S. van der Zwaag, A critical appraisal of the potential of self healing polymeric coatings. Prog. Org. Coat. 72, 211–221 (2011)

    Article  Google Scholar 

  81. A.E. Hughes, I.S. Cole, T.H. Muster, R.J Varley, Designing green, self-healing coatings for metal protection. NPG Asia Mater. 2, 143–151 (2010)

    Google Scholar 

  82. M.F. Montemor, Functional and smart coatings for corrosion protection: a review of recent advances. Surf. Coat. Technol. 258, 17–37 (2014)

    Article  Google Scholar 

  83. M. Zheludkevich, in Self-Healing Materials—Fundamentals, Design Strategies, and Applications. Self-Healing Anticorrosion Coatings, Chapter 4 (Wiley, Weinheim, 2009), pp. 101–139

    Google Scholar 

  84. M.L. Zheludkevich, J. Tedim, M.G.S. Ferreira, “Smart” coatings for active corrosion protection based on multi-functional micro and nanocontainers. Electrochim. Acta 82, 314–323 (2012)

    Article  Google Scholar 

  85. D.V. Andreeva, D. Fix, H. Möhwald, D.G. Shchukin, Self-healing anticorrosion coatings based on pH-sensitive polyelectrolyte/inhibitor sandwichlike nanostructures. Adv. Mater. 20, 2789–2794 (2008)

    Article  Google Scholar 

  86. B. Blaiszik, S. Kramer, S. Olugebefola, J. Moore, N. Sottos, S. White, Self-healing polymers and composites. Ann. Rev. Mater. Res. 40, 179–211 (2010)

    Article  ADS  Google Scholar 

  87. S.J. Garcia, H.R. Fischer, P.A. White, J. Mardel, Y. Gonzalez-Garcia, J.M.C. Mol, A.E. Hughes, Self-healing anticorrosive organic coating based on an encapsulated water reactive silyl ester: synthesis and proof of concept. Prog. Org. Coat. 70, 142–149 (2011)

    Article  Google Scholar 

  88. D.O. Grigoriev, K. Köhler, E. Skorb, D.G. Shchukin, H. Möhwald, Polyelectrolyte complexes as a smart depot for self-healing anticorrosion coatings. Soft Matter 5, 1426–1432 (2009)

    Article  ADS  Google Scholar 

  89. M.L. Zheludkevich, D.G. Shchukin, K.A. Yasakau, H. Möhwald, M.G.S. Ferreira, Anticorrosion coatings with self-healing effect based on nanocontainers impregnated with corrosion inhibitor. Chem. Mater. 19, 402–411 (2007)

    Google Scholar 

  90. G. Williams, S. Geary, H.N. McMurray, Smart release corrosion inhibitor pigments based on organic ion-exchange resins. Corros. Sci. 57, 139–147 (2012)

    Article  Google Scholar 

  91. G. Williams, H.N. McMurray, Inhibition of filiform corrosion on organic-coated AA2024-T3 by smart-release cation and anion-exchange pigments. Electrochim. Acta 69, 287–294 (2012)

    Article  Google Scholar 

  92. R.G. Buchheit, H. Guan, S. Mahajanam, F. Wong, Active corrosion protection and corrosion sensing in chromate-free organic coatings. Prog. Org. Coat. 47, 174–182 (2003)

    Google Scholar 

  93. G. Williams, H.N. McMurray, M.J. Loveridge, Inhibition of corrosion-driven organic coating disbondment on galvanised steel by smart release group II and Zn(II)-exchanged bentonite pigments. Electrochim. Acta 55, 1740–1748 (2010)

    Article  Google Scholar 

  94. M.F. Montemor, D.V. Snihirova, M.G. Taryba, S.V. Lamaka, I.A. Kartsonakis, A.C. Balaskas, G.C. Kordas, J. Tedim, A. Kuznetsova, M.L. Zheludkevich, M.G.S. Ferreira, Evaluation of self-healing ability in protective coatings modified with combinations of layered double hydroxides and cerium molibdate nanocontainers filled with corrosion inhibitors. Electrochim. Acta 60, 31–40 (2012)

    Article  Google Scholar 

  95. D.G. Shchukin, M. Zheludkevich, K. Yasakau, S. Lamaka, M.G.S. Ferreira, H. Möhwald, Layer-by-layer assembled nanocontainers for self-healing corrosion protection. Adv. Mater. 18, 1672–1678 (2006)

    Google Scholar 

  96. D.G. Shchukin, S.V. Lamaka, K.A. Yasakau, M.L. Zheludkevich, M.G.S. Ferreira, H. Möhwald, Active anticorrosion coatings with halloysite nanocontainers. J. Phys. Chem. C 112, 958–964 (2008)

    Google Scholar 

  97. D.G. Shchukin, H. Möhwald, Surface-engineered nanocontainers for entrapment of corrosion inhibitors. Adv. Funct. Mater. 17, 1451–1458 (2007)

    Google Scholar 

  98. P. Zarras, N. Anderson, C. Webber, D.J. Irvin, J.A. Irvin, A. Guenthner, J.D. Stenger-Smith, Progress in using conductive polymers as corrosion-inhibiting coatings. Radiat. Phys. Chem. 68, 387–394 (2003)

    Article  ADS  Google Scholar 

  99. J.O. Iroh, R. Rajagopalan, Electrochemical polymerization of aniline on carbon fibers in aqueous toluene sulfonate solution. J. Appl. Polym. Sci. 76, 1503–1509 (2000)

    Google Scholar 

  100. A.A. Syed, M.K. Dinesan, Review: polyaniline-a novel polymeric material. Talanta 38, 815–837 (1991)

    Article  Google Scholar 

  101. G. Paliwoda-Porebska, M. Rohwerder, M. Stratmann, U. Rammelt, L. Duc, W. Plieth, Release mechanism of electrodeposited polypyrrole doped with corrosion inhibitor anions. J. Solid State Electrochem. 10, 730–736 (2006)

    Google Scholar 

  102. M. Rohwerder, A. Michalik, Conducting polymers for corrosion protection: What makes the difference between failure and success? Electrochim. Acta 53, 1300–1313 (2007)

    Google Scholar 

  103. M. Rohwerder, L.M. Duc, A. Michalik, In situ investigation of corrosion localised at the buried interface between metal and conducting polymer based composite coatings. Electrochim. Acta 54, 6075–6081 (2009)

    Google Scholar 

  104. M. Rohwerder, Conducting polymers for corrosion protection: a review. Int. J. Mater. Res. 100, 1331–1342 (2009)

    Google Scholar 

  105. M. Rohwerder, S. Isik-Uppenkamp, C.A. Amarnath, Application of the Kelvin Probe method for screening the interfacial reactivity of conducting polymer based coatings for corrosion protection. Electrochim. Acta 56, 1889–1893 (2011)

    Google Scholar 

  106. G. Williams, R.J. Holness, D.A. Worsley, H.N. McMurray, Inhibition of corrosion-driven organic coating delamination on zinc by polyaniline. Electrochem. Commun. 6, 549–555 (2004)

    Google Scholar 

  107. A. Vimalanandan, L.-P. Lv, T.H. Tran, K. Landfester, D. Crespy, M. Rohwerder, Redox-responsive self-healing for corrosion protection. Adv. Mater. 25, 6980–6984 (2013)

    Google Scholar 

Download references

Acknowledgments

A.A. and A.E. acknowledge support from the DFG (Deutsche Forschungsgemeinschaft) by grant number ER 601/3-1 within the Priority Program 1640 “Joining by plastic deformation”. J.S.M.O. thanks the Mexican Consejo Nacional de Ciencia y Tecnología (Conacyt) for a scholarship. The authors thank Prof. M. Stratmann for continuous support and Michael Rohwerder for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Erbe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fernández-Solis, C.D. et al. (2016). Fundamentals of Electrochemistry, Corrosion and Corrosion Protection. In: Lang, P., Liu, Y. (eds) Soft Matter at Aqueous Interfaces. Lecture Notes in Physics, vol 917. Springer, Cham. https://doi.org/10.1007/978-3-319-24502-7_2

Download citation

Publish with us

Policies and ethics