Skip to main content

HIV-Induced Epigenetic Alterations in Host Cells

  • Chapter
  • First Online:
Patho-Epigenetics of Infectious Disease

Abstract

Human immunodeficiency virus (HIV), a member of the Retroviridae family, is a positive-sense, enveloped RNA virus. HIV, the causative agent of acquired immunodeficiency syndrome (AIDS) has two major types, HIV-1 and HIV-2 In HIV-infected cells the single stranded viral RNA genome is reverse transcribed and the double-stranded viral DNA integrates into the cellular DNA, forming a provirus. The proviral HIV genome is controlled by the host epigenetic regulatory machinery. Cellular epigenetic regulators control HIV latency and reactivation by affecting the chromatin state in the vicinity of the viral promoter located to the 5′ long terminal repeat (LTR) sequence. In turn, distinct HIV proteins affect the epigenotype and gene expression pattern of the host cells. HIV-1 infection of CD4+ T cells in vitro upregulated DNMT activity and induced hypermethylation of distinct cellular promoters. In contrast, in the colon mucosa and peripheral blood mononuclear cells from HIV-infected patients demethylation of the FOXP3 promoter was observed, possibly due to the downregulation of DNA methyltransferase 1. For a curative therapy of HIV infected individuals and AIDS patients, a combination of antiretroviral drugs with epigenetic modifying compounds have been suggested for the reactivation of latent HIV-1 genomes. These epigenetic drugs include histone deacetylase inhibitors (HDACI), histone methyltransferase inhibitors (HMTI), histone demethylase inhibitors, and DNA methyltransferase inhibitors (DNMTI).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Hameed EA, Ji H, Sherman KE, Shata MT (2014) Epigenetic modification of FOXP3 in patients with chronic HIV infection. J Acquir Immune Defic Syndr 65:19–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atianand MK, Fitzgerald KA (2014) Long non-coding RNAs and control of gene expression in the immune system. Trends Mol Med 20:623–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baltimore D, Boldin MP, O’Connell RM, Rao DS, Taganov KD (2008) MicroRNAs: new regulators of immune cell development and function. Nat Immunol 9:839–845

    Article  CAS  PubMed  Google Scholar 

  • Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A (2009) An operational definition of epigenetics. Genes Dev 23:781–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326

    Article  CAS  PubMed  Google Scholar 

  • Bignami F, Pilotti E, Bertoncelli L, Ronzi P, Gulli M, Marmiroli N, Magnani G, Pinti M, Lopalco L, Mussini C, Ruotolo R, Galli M, Cossarizza A, Casoli C (2012) Stable changes in CD4+ T lymphocyte miRNA expression after exposure to HIV-1. Blood 119:6259–6267

    Article  CAS  PubMed  Google Scholar 

  • Blazkova J, Trejbalova K, Gondois-Rey F, Halfon P, Philibert P, Guiguen A, Verdin E, Olive D, Van Lint C, Hejnar J, Hirsch I (2009) CpG methylation controls reactivation of HIV from latency. PLoS Pathog 5:e1000554

    Article  PubMed  PubMed Central  Google Scholar 

  • Bohnlein E, Lowenthal JW, Siekevitz M, Ballard DW, Franza BR, Greene WC (1988) The same inducible nuclear proteins regulates mitogen activation of both the interleukin-2 receptor-alpha gene and type 1 HIV. Cell 53:827–836

    Article  CAS  PubMed  Google Scholar 

  • Boland MJ, Nazor KL, Loring JF (2014) Epigenetic regulation of pluripotency and differentiation. Circ Res 115:311–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Britton LM, Sova P, Belisle S, Liu S, Chan EY, Katze MG, Garcia BA (2014) A proteomic glimpse into the initial global epigenetic changes during HIV infection. Proteomics 14:2226–2230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnett JC, Rossi JJ (2012) RNA-based therapeutics: current progress and future prospects. Chem Biol 19:60–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bushman F, Lewinski M, Ciuffi A, Barr S, Leipzig J, Hannenhalli S, Hoffmann C (2005) Genome-wide analysis of retroviral DNA integration. Nat Rev Microbiol 3:848–858

    Article  CAS  PubMed  Google Scholar 

  • Chen BK, Feinberg MB, Baltimore D (1997) The kappaB sites in the human immunodeficiency virus type 1 long terminal repeat enhance virus replication yet are not absolutely required for viral growth. J Virol 71:5495–5504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chene L, Nugeyre MT, Barre-Sinoussi F, Israel N (1999) High-level replication of human immunodeficiency virus in thymocytes requires NF-kappaB activation through interaction with thymic epithelial cells. J Virol 73:2064–2073

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christman JK (2002) 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 21:5483–5495

    Article  CAS  PubMed  Google Scholar 

  • Colin L, Van Lint C (2009) Molecular control of HIV-1 postintegration latency: implications for the development of new therapeutic strategies. Retrovirology 6:111

    Article  PubMed  PubMed Central  Google Scholar 

  • Coull JJ, Romerio F, Sun JM, Volker JL, Galvin KM, Davie JR, Shi Y, Hansen U, Margolis DM (2000) The human factors YY1 and LSF repress the human immunodeficiency virus type 1 long terminal repeat via recruitment of histone deacetylase 1. J Virol 74:6790–6799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cullen SM, Mayle A, Rossi L, Goodell MA (2014) Hematopoietic stem cell development: an epigenetic journey. Curr Top Dev Biol 107:39–75

    Article  CAS  PubMed  Google Scholar 

  • Dollard SC, Gummuluru S, Tsang S, Fultz PN, Dewhurst S (1994) Enhanced responsiveness to nuclear factor kappa B contributes to the unique phenotype of simian immunodeficiency virus variant SIVsmmPBj14. J Virol 68:7800–7809

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duverger A, Jones J, May J, Bibollet-Ruche F, Wagner FA, Cron RQ, Kutsch O (2009) Determinants of the establishment of human immunodeficiency virus type 1 latency. J Virol 83:3078–3093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Easley R, Van Duyne R, Coley W, Guendel I, Dadgar S, Kehn-Hall K, Kashanchi F (2010) Chromatin dynamics associated with HIV-1 Tat-activated transcription. Biochim Biophys Acta 1799:275–285

    Article  CAS  PubMed  Google Scholar 

  • Engelman A, Mizuuchi K, Craigie R (1991) HIV-1 DNA integration: mechanism of viral DNA cleavage and DNA strand transfer. Cell 67:1211–1221

    Article  CAS  PubMed  Google Scholar 

  • Engelman A, Kessl JJ, Kvaratskhelia M (2013) Allosteric inhibition of HIV-1 integrase activity. Curr Opin Chem Biol 17:339–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB, Zhang X, Wang L, Issner R, Coyne M, Ku M, Durham T, Kellis M, Bernstein BE (2011) Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 473:43–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng S, Cokus SJ, Zhang X, Chen PY, Bostick M, Goll MG, Hetzel J, Jain J, Strauss SH, Halpern ME, Ukomadu C, Sadler KC, Pradhan S, Pellegrini M, Jacobsen SE (2010) Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci U S A 107:8689–8694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fowler L, Saksena NK (2013) Micro-RNA: new players in HIV-pathogenesis, diagnosis, prognosis and antiviral therapy. AIDS Rev 15:3–14

    PubMed  Google Scholar 

  • Friedman J, Cho WK, Chu CK, Keedy KS, Archin NM, Margolis DM, Karn J (2011) Epigenetic silencing of HIV-1 by the histone H3 lysine 27 methyltransferase enhancer of Zeste 2. J Virol 85:9078–9089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganesh L, Burstein E, Guha-Niyogi A, Louder MK, Mascola JR, Klomp LW, Wijmenga C, Duckett CS, Nabel GJ (2003) The gene product Murr1 restricts HIV-1 replication in resting CD4+ lymphocytes. Nature 426:853–857

    Article  CAS  PubMed  Google Scholar 

  • Gilmore TD (2006) Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25:6680–6684

    Article  CAS  PubMed  Google Scholar 

  • Giordanengo V, Ollier L, Lanteri M, Lesimple J, March D, Thyss S, Lefebvre JC (2004) Epigenetic reprogramming of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) in HIV-1-infected CEM T cells. FASEB J 18:1961–1963

    CAS  PubMed  Google Scholar 

  • Grant C, Oh U, Fugo K, Takenouchi N, Griffith C, Yao K, Newhook TE, Ratner L, Jacobson S (2006) Foxp3 represses retroviral transcription by targeting both NF-kappaB and CREB pathways. PLoS Pathog 2:e33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guttman M, Rinn JL (2012) Modular regulatory principles of large non-coding RNAs. Nature 482:339–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill PW, Amouroux R, Hajkova P (2014) DNA demethylation, Tet proteins and 5-hydroxymethylcytosine in epigenetic reprogramming: an emerging complex story. Genomics 104:324–333

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Wang F, Argyris E, Chen K, Liang Z, Tian H, Huang W, Squires K, Verlinghieri G, Zhang H (2007) Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes. Nat Med 13:1241–1247

    Article  CAS  PubMed  Google Scholar 

  • Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Onyango P, Cui H, Gabo K, Rongione M, Webster M, Ji H, Potash JB, Sabunciyan S, Feinberg AP (2009) The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41:178–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji H, Ehrlich LI, Seita J, Murakami P, Doi A, Lindau P, Lee H, Aryee MJ, Irizarry RA, Kim K, Rossi DJ, Inlay MA, Serwold T, Karsunky H, Ho L, Daley GQ, Weissman IL, Feinberg AP (2010) Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature 467:338–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones KA, Peterlin BM (1994) Control of RNA initiation and elongation at the HIV-1 promoter. Annu Rev Biochem 63:717–743

    Article  CAS  PubMed  Google Scholar 

  • Kauder SE, Bosque A, Lindqvist A, Planelles V, Verdin E (2009) Epigenetic regulation of HIV-1 latency by cytosine methylation. PLoS Pathog 5:e1000495

    Article  PubMed  PubMed Central  Google Scholar 

  • Kinoshita S, Su L, Amano M, Timmerman LA, Kaneshima H, Nolan GP (1997) The T cell activation factor NF-ATc positively regulates HIV-1 replication and gene expression in T cells. Immunity 6:235–244

    Article  CAS  PubMed  Google Scholar 

  • Klase Z, Houzet L, Jeang KT (2012) MicroRNAs and HIV-1: complex interactions. J Biol Chem 287:40884–40890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31:89–97

    Article  CAS  PubMed  Google Scholar 

  • Lassen K, Han Y, Zhou Y, Siliciano J, Siliciano RF (2004) The multifactorial nature of HIV-1 latency. Trends Mol Med 10:525–531

    Article  CAS  PubMed  Google Scholar 

  • Leonard J, Parrott C, Buckler-White AJ, Turner W, Ross EK, Martin MA, Rabson AB (1989) The NF-kappa B binding sites in the human immunodeficiency virus type 1 long terminal repeat are not required for virus infectivity. J Virol 63:4919–4924

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mikovits JA, Young HA, Vertino P, Issa JP, Pitha PM, Turcoski-Corrales S, Taub DD, Petrow CL, Baylin SB, Ruscetti FW (1998) Infection with human immunodeficiency virus type 1 upregulates DNA methyltransferase, resulting in de novo methylation of the gamma interferon (IFN-gamma) promoter and subsequent downregulation of IFN-gamma production. Mol Cell Biol 18:5166–5177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nabel G, Baltimore D (1987) An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 326:711–713

    Article  CAS  PubMed  Google Scholar 

  • Palacios JA, Perez-Pinar T, Toro C, Sanz-Minguela B, Moreno V, Valencia E, Gomez-Hernando C, Rodes B (2012) Long-term nonprogressor and elite controller patients who control viremia have a higher percentage of methylation in their HIV-1 proviral promoters than aviremic patients receiving highly active antiretroviral therapy. J Virol 86:13081–13084

    Google Scholar 

  • Pion M, Jaramillo-Ruiz D, Martinez A, Munoz-Fernandez MA, Correa-Rocha R (2013) HIV infection of human regulatory T cells downregulates Foxp3 expression by increasing DNMT3b levels and DNA methylation in the FOXP3 gene. AIDS 27:2019–2029

    Article  CAS  PubMed  Google Scholar 

  • Poveda E (2014) Ingenol derivates promising for HIV eradication. AIDS Rev 16:246

    PubMed  Google Scholar 

  • Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166

    Article  CAS  PubMed  Google Scholar 

  • Saayman S, Ackley A, Turner AM, Famiglietti M, Bosque A, Clemson M, Planelles V, Morris KV (2014) An HIV-encoded antisense long noncoding RNA epigenetically regulates viral transcription. Mol Ther 22:1164–1175

    Article  CAS  PubMed Central  Google Scholar 

  • Selby MJ, Peterlin BM (1990) Trans-activation by HIV-1 Tat via a heterologous RNA binding protein. Cell 62:769–776

    Article  CAS  PubMed  Google Scholar 

  • Serrao E, Krishnan L, Shun MC, Li X, Cherepanov P, Engelman A, Maertens GN (2014) Integrase residues that determine nucleotide preferences at sites of HIV-1 integration: implications for the mechanism of target DNA binding. Nucleic Acids Res 42:5164–5176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shan L, Yang HC, Rabi SA, Bravo HC, Shroff NS, Irizarry RA, Zhang H, Margolick JB, Siliciano JD, Siliciano RF (2011) Influence of host gene transcription level and orientation on HIV-1 latency in a primary-cell model. J Virol 85:5384–5393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun G, Li H, Wu X, Covarrubias M, Scherer L, Meinking K, Luk B, Chomchan P, Alluin J, Gombart AF, Rossi JJ (2012) Interplay between HIV-1 infection and host microRNAs. Nucleic Acids Res 40:2181–2196

    Article  CAS  PubMed  Google Scholar 

  • Swaminathan G, Navas-Martin S, Martin-Garcia J (2014) MicroRNAs and HIV-1 infection: antiviral activities and beyond. J Mol Biol 426:1178–1197

    Article  CAS  PubMed  Google Scholar 

  • Tan Gana NH, Onuki T, Victoriano AF, Okamoto T (2012) MicroRNAs in HIV-1 infection: an integration of viral and cellular interaction at the genomic level. Front Microbiol 3:306

    Article  PubMed  PubMed Central  Google Scholar 

  • Timp W, Feinberg AP (2013) Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host. Nat Rev Cancer 13:497–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyagi M, Pearson RJ, Karn J (2010) Establishment of HIV latency in primary CD4+ cells is due to epigenetic transcriptional silencing and P-TEFb restriction. J Virol 84:6425–6437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Lint C, Bouchat S, Marcello A (2013) HIV-1 transcription and latency: an update. Retrovirology 10:67

    Article  PubMed  PubMed Central  Google Scholar 

  • Waddington CH (1953) Epigenetics and evolution. Symp Soc Exp Biol 7:186–199

    Google Scholar 

  • Wang GP, Ciuffi A, Leipzig J, Berry CC, Bushman FD (2007) HIV integration site selection: analysis by massively parallel pyrosequencing reveals association with epigenetic modifications. Genome Res 17:1186–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Xue Y, Han Y, Lin L, Wu C, Xu S, Jiang Z, Xu J, Liu Q, Cao X (2014) The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science 344:310–313

    Article  CAS  PubMed  Google Scholar 

  • Wei DG, Chiang V, Fyne E, Balakrishnan M, Barnes T, Graupe M, Hesselgesser J, Irrinki A, Murry JP, Stepan G, Stray KM, Tsai A, Yu H, Spindler J, Kearney M, Spina CA, McMahon D, Lalezari J, Sloan D, Mellors J, Geleziunas R, Cihlar T (2014) Histone deacetylase inhibitor romidepsin induces HIV expression in CD4 T cells from patients on suppressive antiretroviral therapy at concentrations achieved by clinical dosing. PLoS Pathog 10:e1004071

    Article  PubMed  PubMed Central  Google Scholar 

  • West MJ, Lowe AD, Karn J (2001) Activation of human immunodeficiency virus transcription in T cells revisited: NF-kappaB p65 stimulates transcriptional elongation. J Virol 75:8524–8537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams SA, Greene WC (2007) Regulation of HIV-1 latency by T-cell activation. Cytokine 39:63–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams SA, Chen LF, Kwon H, Ruiz-Jarabo CM, Verdin E, Greene WC (2006) NF-kappaB p50 promotes HIV latency through HDAC recruitment and repression of transcriptional initiation. EMBO J 25:139–149

    Article  CAS  PubMed  Google Scholar 

  • Willingham AT, Orth AP, Batalov S, Peters EC, Wen BG, Aza-Blanc P, Hogenesch JB, Schultz PG (2005) A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science 309:1570–1573

    Article  CAS  PubMed  Google Scholar 

  • Youngblood B, Reich NO (2008) The early expressed HIV-1 genes regulate DNMT1 expression. Epigenetics 3:149–156

    Article  PubMed  Google Scholar 

  • Zemach A, McDaniel IE, Silva P, Zilberman D (2010) Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 328:916–919

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Ulm A, Somineni HK, Oh S, Weirauch MT, Zhang HX, Chen X, Lehn MA, Janssen EM, Ji H (2014) DNA methylation dynamics during ex vivo differentiation and maturation of human dendritic cells. Epigenetics Chromatin 7:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Yamane H, Paul WE (2010) Differentiation of effector CD4 T cell populations. Annu Rev Immunol 28:445–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Tarek Shata M.D., M.Sc., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Abdel-Hameed, E.A., Ji, H., Shata, M.T. (2016). HIV-Induced Epigenetic Alterations in Host Cells. In: Minarovits, J., Niller, H. (eds) Patho-Epigenetics of Infectious Disease. Advances in Experimental Medicine and Biology, vol 879. Springer, Cham. https://doi.org/10.1007/978-3-319-24738-0_2

Download citation

Publish with us

Policies and ethics