Skip to main content

Classical Averaging Functions

  • Chapter
  • First Online:
A Practical Guide to Averaging Functions

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 329))

Abstract

This chapter presents the classical means, starting with the weighted arithmetic and power means, and then continuing to the quasi-arithmetic means. The topics of generating functions, comparability and weights selection are covered. Several interesting classes of non-quasi-arithmetic means are presented, including Gini, Bonferroni, logarithmic and Bajraktarevic means. Methods of extension of symmetric bivariate means to the multivariate case are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In some languages there are no distinct terms that refer separately to the average and the mean, e.g. moyenne (Fr), medie (It.), promedio (or media) (Sp.), sredniaya (Ru.), Gemiddelde (Dut.), Gjennomsnitt (No.), whereas in others there are, e.g. Durchschnitt or Mittelwerte (Ger.). For etymology of the words mean and average see [Eis71]. We will use both terms synonymously.

  2. 2.

    A function g is convex if and only if \(g(\alpha t_1+(1-\alpha )t_2) \le \alpha g(t_1)+(1-\alpha ) g(t_2)\) for all \(t_1,t_2 \in Dom(g)\) and \(\alpha \in [0,1]\).

  3. 3.

    It is easy to check that

    $$ \int _{[0,1]^n} M(\mathbf {x}) d \mathbf {x} = \frac{1}{n}\left( \int _{0}^1 x_1dx_1+\cdots +\int _{0}^1 x_ndx_n\right) =\frac{n}{n}\int _{0}^1 tdt=\frac{1}{2}. $$

    Substituting the above value in (2.1) we obtain \(orness(M)=\frac{1}{2}\). Following, for a weighted arithmetic mean we also obtain

    $$ \int _{[0,1]^n} M_{\mathbf {w}}(\mathbf {x}) d \mathbf {x} = w_1\int _{0}^1 x_1dx_1+\cdots +w_n\int _{0}^1 x_ndx_n=\sum _{i=1}^nw_i\int _{0}^1 tdt=\frac{1}{2}. $$

    .

  4. 4.

    We shall use square brackets in the notation \(M_{[r]}\) for power means to distinguish them from quasi-arithmetic means \(M_g\) (see Sect. 2.3), where parameter g denotes a generating function rather than a real number. The same applies to the weighted power means.

  5. 5.

    The limiting cases \(\min \) (\(r=-\infty \)) and \(\max \) (\(r=\infty \)) which have neutral elements \(e=1\) and \(e=0\) respectively, are not themselves power means.

  6. 6.

    For this reason, one can assume that g is monotone increasing, as otherwise we can simply take \(-g\).

  7. 7.

    Observe that the limiting cases \(\min \) and \(\max \) are not quasi-arithmetic means.

  8. 8.

    This concept of supermodularity of a function on \({\mathbb I}^n\) is different from supermodularity and submodularity of fuzzy measures in Definition 4.14.

  9. 9.

    Recall \({n \atopwithdelims ()m} = \frac{n!}{m!(n-m)!}\).

  10. 10.

    See Definition 1.51 on p. 18.

  11. 11.

    This is a so-called quantifier, p. 120.

  12. 12.

    See Definition 1.43. Continuity and decomposability imply idempotency.

  13. 13.

    See Definition 1.44.

  14. 14.

    These measures of entropy can be obtained by relaxing the subadditivity condition which characterizes Shannon entropy [TY05].

References

  1. J. Aczél, On mean values. Bull. Am. Math. Soc. 54, 392–400 (1948)

    Google Scholar 

  2. G. Beliakov, Shape preserving approximation using least squares splines. Approx. Theory Appl. 16, 80–98 (2000)

    MathSciNet  MATH  Google Scholar 

  3. G. Beliakov, How to build aggregation operators from data? Int. J. Intell. Syst. 18, 903–923 (2003)

    Article  MATH  Google Scholar 

  4. G. Beliakov, Learning weights in the generalized OWA operators. Fuzzy Optim. Decis. Making 4, 119–130 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Beliakov, T. Calvo, S. James, On Lipschitz properties of generated aggregation functions. Fuzzy Sets Syst. 161, 1437–1447 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. G. Beliakov, J.J. Dujmovic, Extension of bivariate means to weighted means of several arguments by using binary trees, submitted (2015)

    Google Scholar 

  7. G. Beliakov, S. James, Stability of weighted penalty-based aggregation functions. Fuzzy Sets Syst. 226, 1–18 (2013)

    Google Scholar 

  8. G. Beliakov, S. James, D. Góomez, J.T. Rodríguez, J. Montero, Learning stable weights for data of varying dimension. In: Proceedings of the AGOP Conference, Katowice, Poland (2015)

    Google Scholar 

  9. G. Beliakov, R. Mesiar, L. Valaskova, Fitting generated aggregation operators to empirical data. Int. J. Uncertainty, Fuzziness Knowl. Based Syst. 12, 219–236 (2004)

    Google Scholar 

  10. G. Beliakov, A. Pradera, T. Calvo, Aggregation Functions: A Guide for Practitioners, vol. 221, Studies in Fuzziness and Soft Computing (Springer, Berlin, 2007)

    MATH  Google Scholar 

  11. C. Bonferroni, Sulle medie multiple di potenze. Bollettino Matematica Italiana 5, 267–270 (1950)

    MathSciNet  MATH  Google Scholar 

  12. J.M. Borwein, P.B. Borwein, PI and the AGM: A Study in Analytic Number Theory and Computational Complexity (Wiley, New York, 1987)

    MATH  Google Scholar 

  13. P.S. Bullen, Handbook of Means and Their Inequalities (Kluwer, Dordrecht, 2003)

    Book  MATH  Google Scholar 

  14. T. Calvo, A. Kolesárová, M. Komorníková, R. Mesiar, Aggregation operators: properties, classes and construction methods. In: Aggregation Operators. New Trends and Applications, ed. by T. Calvo, G. Mayor, R. Mesiar (Physica—Verlag, Heidelberg, 2002), pp. 3–104

    Google Scholar 

  15. T. Calvo, G. Mayor, Remarks on two types aggregation functions. Tatra Mount. Math. Publ. 16, 235–254 (1999)

    MathSciNet  MATH  Google Scholar 

  16. T. Calvo, R. Mesiar, R.R. Yager, Quantitative weights and aggregation. IEEE Trans. Fuzzy Syst. 12, 62–69 (2004)

    Article  Google Scholar 

  17. T. Calvo et al., Generation on weighting triangles associated with aggregation functions. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 8, 417–451 (2000)

    Google Scholar 

  18. M. Cardin, M. Manzi, Supermodular and ultramodular aggregation evaluators. In: Proceedings of the 5th International Summer School of Aggregation Operators AGOP’09, July 6–11. Palma de Mallorca, Spain, 2009

    Google Scholar 

  19. A.L. Cauchy, Cours d’analyse de l’Ecole Royale Polytechnique. Analyse algébrique 1 (1821)

    Google Scholar 

  20. O. Chisini, Sul concetto di media. Periodico di Matematiche 4, 106–116 (1929)

    MATH  Google Scholar 

  21. D. Dubois, H. Prade, A review of fuzzy set aggregation connectives. Inf. Sci. 36, 85–121 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  22. D. Dubois, H. Prade, On the use of aggregation operations in information fusion processes. Fuzzy Sets Syst. 142, 143–161 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. J.J. Dujmovic, An efficient algorithm for general weighted aggregation. In: Proceedings of the AGOP Conference, Katowice, Poland (2015)

    Google Scholar 

  24. J.J. Dujmovic, Two integrals related to means. Univ. Beograd. Publ. Elektrotechn. Fak. (1973)

    Google Scholar 

  25. J.J. Dujmovic, Weighted conjunctive and disjunctive means and their application in system evaluation. Univ. Beograd. Publ. Elektrotechn. Fak. 147–158 (1974)

    Google Scholar 

  26. J.J. Dujmovic, Seven flavors of andness/orness. In: EUROFUSE Belgrade, 2005

    Google Scholar 

  27. J.J. Dujmovic, Continuous preference logic for system evaluation. IEEE Trans. Fuzzy Syst. 15, 1082–1099 (2007)

    Article  Google Scholar 

  28. J.J. Dujmovic, G. Beliakov, Idempotent weighted aggregation based on binary aggregation trees, submitted (2015)

    Google Scholar 

  29. C. Eisenhart, The development of the concept of the best mean of a set of measurements from antiquity to the present day. In: American Statistical Association Presidential Address, http://www.york.ac.uk/depts/maths/histstat/eisenhart.pdf (1971)

  30. J.M. Fernández Salido, S. Murakami, Extending Yager’s orness concept for the OWA aggregators to other mean operators. Fuzzy Sets Syst. 139, 515–542 (2003)

    Google Scholar 

  31. J. Fodor, J.-L. Marichal, On nonstrict means. Aequationes Mathematicae 54, 308–327 (1997)

    Google Scholar 

  32. J. Fodor, M. Roubens, Fuzzy Preference Modelling and Multicriteria Decision Support (Kluwer, Dordrecht, 1994)

    Book  MATH  Google Scholar 

  33. C. Gini, Le Medie. Milan (Russian translation, Srednie Velichiny, Statistica, Moscow, 1970): Unione Tipografico-Editorial Torinese, 1958

    Google Scholar 

  34. D. Gómez, J. Montero, J.T. Rodríguez, K. Rojas, Stability in aggregation operators. In: Proceedings of IPMU, Catania, Italy, 2012

    Google Scholar 

  35. D. Gómez, K. Rojas, J. Montero, J.T. Rodríguez, G. Beliakov, Consistency and stability in aggregation operators: an application to missing data problems. Int. J. Comput. Intell. Syst. 7, 595–604 (2014)

    Google Scholar 

  36. A. Kishor, A.K. Singh, N.R. Pal, Orness measure of OWA operators: a new approach. IEEE Trans. Fuzzy Syst. 22, 1039–1045 (2014)

    Article  Google Scholar 

  37. M. Komorníková, Aggregation operators and additive generators. Int. J. Uncertainty Fuzziness Knowl Based Syst. 9, 205–215 (2001)

    Google Scholar 

  38. X. Liu, An orness measure for quasi-arithmetic means. IEEE Trans. Fuzzy Syst. 14, 837–848 (2006)

    Article  Google Scholar 

  39. R.A. Marques Pereira, R.A. Ribeiro, Aggregation with generalized mixture operators using weighting functions. Fuzzy Sets Syst. 137, 43–58 (2003)

    Google Scholar 

  40. J. Matkowski, A mean-value theorem and its applications. J. Math. Anal. Appl. 373, 227–234 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. G. Mayor, T. Calvo, Extended aggregation functions. In: IFSA’97. vol. 1, Prague, 1997, pp. 281–285

    Google Scholar 

  42. J. Merikoski, Extending means of two variables to several variables. J. Inequal. Pure Appl. Math. 5, Article 65 (2004)

    Google Scholar 

  43. R. Mesiar, J. Spirková, Weighted means and weighting functions. Kybernetik 42, 151–160 (2006)

    MathSciNet  MATH  Google Scholar 

  44. R. Mesiar, J. Spirková, L. Vavríková, Weighted aggregation operators based on minimization. Inf. Sci. 178, 1133–1140 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. S. Mustonen, Logarithmic Mean for Several Arguments, http://www.survo.fi/papers/logmean.pdf (2002)

  46. E. Neuman, The weighted logarithmic mean. J. Math. Anal. Appl. 188, 885–900 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  47. A.O. Pittenger, The logarithmic mean in n variables. Am. Math. Monthly 92, 99–104 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  48. A. Pradera, E. Trillas, T. Calvo, A general class of triangular norm-based aggregation operators: quasi-linear T-S operators. Int. J. Approx. Reasoning 30, 57–72 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  49. J.T. Rickard, J. Aisbett, New classes of threschold aggregation funcitons based upon the Tsallis q-exponential with applications to perceptual computing. IEEE Trans. Fuzzy Syst. 22, 672–684 (2014)

    Article  Google Scholar 

  50. K. Rojas, D. Gómez, J. Montero, J.T. Rodríguez, Strictly stable families of aggregation operators. Fuzzy Sets Syst. 228, 44–63 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  51. E. Rubin, Quantitative commentary on thucydides. Am. Stat. 25, 52–54 (1971)

    Article  Google Scholar 

  52. V. Torra, Learning weights for the quasi-weighted means. IEEE Trans. Fuzzy Systems 10, 653–666 (2002)

    Article  MathSciNet  Google Scholar 

  53. L. Troiano, R.R. Yager, A meaure of dispersion for OWA operators. In: Proceedings of the 11th IFSA World Congress, ed. by Y. Liu, G. Chen, M. Ying (Tsinghua University Press, Springer, Beijing China, 2005), pp. 82–87

    Google Scholar 

  54. R.R. Yager, On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Trans. Syst. Man Cybern. 18, 183–190 (1988)

    Google Scholar 

  55. R.R. Yager, Connectives and quantifiers in fuzzy sets. Fuzzy Sets Syst. 40, 39–76 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  56. R.R. Yager, Measures of entropy and fuzziness related to aggregation operators. Inf. Sci. 82, 147–166 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gleb Beliakov .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Beliakov, G., Bustince Sola, H., Calvo Sánchez, T. (2016). Classical Averaging Functions. In: A Practical Guide to Averaging Functions. Studies in Fuzziness and Soft Computing, vol 329. Springer, Cham. https://doi.org/10.1007/978-3-319-24753-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24753-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24751-9

  • Online ISBN: 978-3-319-24753-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics