Skip to main content

Eukaryotic V-ATPase and Its Super-complexes: From Structure and Function to Disease and Drug Targeting

  • Chapter
  • First Online:
Regulation of Ca2+-ATPases,V-ATPases and F-ATPases

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 14))

Abstract

The eukaryotic vacuolar-type ATPase (V-ATPase) is a multi-subunit membrane protein complex, which is evolutionarily conserved from yeast to human. It is also functionally conserved and operates as a rotary proton pumping nano-motor. In the first part of this chapter we discuss the structure and function of the yeast V-ATPase (V1VO) holoenzyme, We focus on the structural features of its subunits forming both catalytic V1 and proton conducting VO sectors. Particularly, the recently solved structure of DF-subunit complex is discussed in relation to the energy coupling and regulation of yeast V-ATPase. It is noteworthy that the structure could contribute to understanding the function and regulation of V-ATPases of eukaryotes including human, leading to the rational design of specific inhibitors for medical applications. In addition to the well characterized role as proton pump, V-ATPases have acquired alternative cellular functions during evolution. In the second part we analyze novel roles of V-ATPase in function, signaling, and vesicular trafficking of cellular receptors. Our recent studies have uncovered that V-ATPase itself functions as an evolutionarily conserved pH-sensing and signaling receptor, which forms super-complex with aldolase/cytohesin-2/Arf1,6 small GTPases in early endosomes. On the other hand, V-ATPase forms a super-complex with mTORC1/Ragulator/Rag/Rheb small GTPases in late endosome/lysosomes and is involved in amino-acids sensing and monitoring nutritional state of cells. Finally, we discuss the role of V-ATPase in the development and progression of various diseases including cancer, diabetes, and osteopetrosis among others. We also present emerging approaches and future perspectives for specific drug targeting to V-ATPase and its super-complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

a2N:

N-terminal cytosolic tail of a2-subunit V-ATPase

Arf1:

ADP-ribosylation factor 1

Arf6:

ADP-ribosylation factor 6

BafA1 :

bafilomycin A1

c/c″-ring:

Ring composed by the c- and c″-subunits

ConA :

concanamycin A

CRP:

Calorie restriction pathway

cryo-EM:

Cryo-Electron microscopy

CTH2:

Cytohesin-2

dErbB:

Dimeric EGFR/ErbB-receptor

EGF:

Epidermal growth factor

EmGFP:

Emerald green fluorescent protein

FKPB12:

FK506/rapamycin binding protein

FRET:

Fluorescence resonance energy transfer

Fz:

Frizzled

GH:

Growth hormone

HRG-1:

Heme-responsive gene 1 protein

IGF-1R:

Insulin-like growth factor-1 receptor

IR:

Insulin receptor

LRP6:

Low-density receptor-related protein

M. sexta :

Manduca sexta

mErbB:

Monomeric EGFR/ErbB-receptor

mTORC1:

Mammalian target of rapamycin complex 1

mTORC2:

Mammalian target of rapamycin complex 2

NMR:

Nuclear magnetic resonance

NOE:

Nuclear Overhauser effect

PAT1:

Proton coupled amino acid transporter 1

PI3K:

Phosphatidylinositol 3-kinase pathway

PKA:

Protein kinase A

PPI:

Protein–protein interaction interface inhibitors

RagA/C:

Rag A/C GTPases

Ragulator:

Ragulator complex

Ras:

Rat sarcoma small GTPase

RAVE:

Regulator of ATPase of vacuoles and endosomes

Rbcn-3:

Rabconnectin-3A/B

Rheb GTPase:

Ras homolog enriched in brain

S. cerevisiae :

Saccharomyces cerevisiae

SAXS:

Small-angle X-ray scattering

ScDF1 and ScDF2:

Two conformations of subunit DF complex

TFEB :

Transcription factor EB

TSC complex:

Tuberous sclerosis complex

V-ATPase:

V-type ATPase

ΔpH:

Proton gradient

ΔΨ:

Membrane potential

References

  1. Marshansky V, Rubinstein JL, GrĂ¼ber G (2014) Eukaryotic V-ATPase: novel structural findings and functional insights. Biochim Biophys Acta 1837:857–879

    Article  CAS  PubMed  Google Scholar 

  2. Marshansky V, Futai M (2008) The V-type H + -ATPase in vesicular trafficking: targeting, regulation and function. Curr Opin Cell Biol 20:415–426

    Article  CAS  PubMed  Google Scholar 

  3. GrĂ¼ber G, Marshansky V (2008) New insights into structure-function relationships between archeal ATP synthase A1Ao and vacuolar type ATPase V1Vo. BioEssays 30:1–14

    Article  CAS  Google Scholar 

  4. Nishi T, Forgac M (2002) The vacuolar H + -ATPases—nature’s most versatile proton pumps. Nat Rev Mol Cell Biol 3:94–103

    Article  CAS  PubMed  Google Scholar 

  5. Forgac M (2007) Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat Rev Mol Cell Biol 8:917–929

    Article  CAS  PubMed  Google Scholar 

  6. Hinton A, Bond S, Forgac M (2009) V-ATPase functions in normal and disease processes. Pflugers Arch 457:589–598

    Article  CAS  PubMed  Google Scholar 

  7. Zhang Z, Zheng Y, Mazon H et al (2008) Structure of the yeast vacuolar ATPase. J Biol Chem 283:35983–35995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sun-Wada GH, Tabata H, Kawamura N et al (2007) Differential expression of a subunit isoforms of the vacuolar-type proton pump ATPase in mouse endocrine tissues. Cell Tissue Res 329:239–248

    Article  CAS  PubMed  Google Scholar 

  9. Saroussi S, Nelson N (2009) Vacuolar H + -ATPase-an enzyme for all seasons. Pflugers Arch 457:581–587

    Article  CAS  PubMed  Google Scholar 

  10. Muench SP, Huss M, Song CF et al (2009) Cryo-electron microscopy of the vacuolar ATPase motor reveals its mechanical and regulatory complexity. J Mol Biol 386:989–999

    Article  CAS  PubMed  Google Scholar 

  11. Maxson ME, Grinstein S (2014) The vacuolar-type H + -ATPase at a glance – more than a proton pump. J Cell Sci 127:4987–4993

    Article  PubMed  CAS  Google Scholar 

  12. Rawson S, Phillips C, Huss M et al (2015) Structure of the vacuolar H + -ATPase rotary motor reveals new mechanistic insights. Structure 23:461–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kane PM (2000) Regulation of V-ATPases by reversible disassembly. FEBS Lett 469:137–141

    Article  CAS  PubMed  Google Scholar 

  14. Kane PM (2006) The where, when, and how of organelle acidification by the yeast vacuolar H + -ATPase. Microbiol Mol Biol Rev 70:177–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kane PM (2012) Targeting reversible disassembly as a mechanism of controlling V-ATPase activity. Curr Protein Pept Sci 13:117–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Parra KJ, Chan CY, Chen J (2014) Saccharomyces cerevisiae vacuolar H + -ATPase regulation by disassembly and reassembly: one structure and multiple signals. Eukaryot Cell 13:706–714

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Sumner JP, Dow JA, Earley FG et al (1995) Regulation of plasma membrane V-ATPase activity by dissociation of peripheral subunits. J Biol Chem 270:5649–5653

    Article  CAS  PubMed  Google Scholar 

  18. Beyenbach KW, Wieczorek H (2006) The V-type H+ ATPase: molecular structure and function, physiological roles and regulation. J Exp Biol 209:577–589

    Article  CAS  PubMed  Google Scholar 

  19. Kane PM (1995) Disassembly and reassembly of the yeast vacuolar H + -ATPase in vivo. J Biol Chem 270:17025–17032

    CAS  PubMed  Google Scholar 

  20. Trombetta ES, Ebersold M, Garrett W et al (2003) Activation of lysosomal function during dendritic cell maturation. Science 299:1400–1403

    Article  CAS  PubMed  Google Scholar 

  21. Sautin YY, Lu M, Gaugler A et al (2005) Phosphatidylinositol 3-kinase-mediated effects of glucose on vacuolar H + -ATPase assembly, translocation, and acidification of intracellular compartments in renal epithelial cells. Mol Cell Biol 25:575–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lafourcade C, Sobo K, Kieffer-Jaquinod S et al (2008) Regulation of the V-ATPase along the endocytic pathway occurs through reversible subunit association and membrane localization. PLoS One 3, e2758

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Xu Y, Parmar A, Roux E et al (2012) Epidermal growth factor-induced vacuolar H + -ATPase assembly: a role in signaling via mTORC1 activation. J Biol Chem 287:26409–26422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liberman R, Bond S, Shainheit MG et al (2014) Regulated assembly of the V-ATPase is increased during cluster disruption-induced maturation of dendritic cells through a phosphatidylinositol 3-kinase/mTOR-dependent pathway. J Biol Chem 289:1355–1363

    Article  CAS  PubMed  Google Scholar 

  25. Hurtado-Lorenzo A, Skinner M, El Annan J et al (2006) V-ATPase interacts with ARNO and Arf6 in early endosomes and regulates the protein degradative pathway. Nat Cell Biol 8:124–136

    Article  CAS  PubMed  Google Scholar 

  26. Marshansky V (2007) The V-ATPase a2-subunit as a putative endosomal pH-sensor. Biochem Soc Trans 35:1092–1099

    Article  CAS  PubMed  Google Scholar 

  27. Recchi C, Chavrier P (2006) V-ATPase: a potential pH sensor. Nat Cell Biol 8:107–109

    Article  CAS  PubMed  Google Scholar 

  28. Merkulova M, Bakulina A, Thaker YR et al (2010) Specific motifs of the V-ATPase a2-subunit isoform interact with catalytic and regulatory domains of ARNO. Biochim Biophys Acta 1797:1398–1409

    Article  CAS  PubMed  Google Scholar 

  29. Merkulova M, McKee M, Dip PV et al (2010) N-terminal domain of the V-ATPase a2-subunit displays integral membrane protein properties. Protein Sci 19:1850–1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. El-Annan J, Brown D, Breton S et al (2004) Differential expression and targeting of endogenous Arf1 and Arf6 small GTPases in kidney epithelial cells in situ. Am J Physiol Cell Physiol 286:C768–C778

    Article  CAS  PubMed  Google Scholar 

  31. Hosokawa H, Dip PV, Merkulova M et al (2013) The N termini of a-subunit isoforms are involved in signaling between vacuolar H + -ATPase (V-ATPase) and cytohesin-2. J Biol Chem 288:5896–5913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zoncu R, Bar-Peled L, Efeyan A et al (2011) mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H + -ATPase. Science 334:678–683

    Google Scholar 

  33. Bar-Peled L, Sabatini DM (2012) SnapShot: mTORC1 signaling at the lysosomal surface. Cell 151:1390

    Article  CAS  PubMed  Google Scholar 

  34. Efeyan A, Zoncu R, Sabatini DM (2012) Amino acids and mTORC1: from lysosomes to disease. Trends Mol Med 18:524–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Peters C, Bayer MJ, Buhler S, Andersen JS, Mann M, Mayer A (2001) Trans-complex formation by proteolipid channels in the terminal phase of membrane fusion. Nature 409:581–588

    Article  CAS  PubMed  Google Scholar 

  37. Bayer MJ, Reese C, Buhler S et al (2003) Vacuole membrane fusion: Vo functions after trans-SNARE pairing and is coupled to the Ca2 + -releasing channel. J Cell Biol 162:211–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Baars TL, Petri S, Peters C, Mayer A (2007) Role of the V-ATPase in regulation of the vacuolar fission-fusion equilibrium. Mol Biol Cell 18:3873–3882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Strasser B, Iwaszkiewicz J, Michielin O, Mayer A (2011) The V-ATPase proteolipid cylinder promotes the lipid-mixing stage of SNARE-dependent fusion of yeast vacuoles. EMBO J 30:4126–4141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Matsumoto N, Daido S, Sun-Wada GH et al (2014) Diversity of proton pumps in osteoclasts: V-ATPase with a3 and d2 isoforms is a major form in osteoclasts. Biochim Biophys Acta 1837:744–749

    Article  CAS  PubMed  Google Scholar 

  41. Kornak U, Schulz A, Friedrich W et al (2000) Mutations in the a3 subunit of the vacuolar H(+)-ATPase cause infantile malignant osteopetrosis. Hum Mol Genet 9:2059–2063

    Article  CAS  PubMed  Google Scholar 

  42. Smith AN, Jouret F, Bord S et al (2005) Vacuolar H + -ATPase d2 subunit: molecular characterization, developmental regulation, and localization to specialized proton pumps in kidney and bone. J Am Soc Nephrol 16:245–1256

    Google Scholar 

  43. Lee SH, Rho J, Jeong D et al (2006) V-ATPase Vo subunit d2-deficient mice exhibit impaired osteoclast fusion and increased bone formation. Nat Med 12:1403–1409

    Article  CAS  PubMed  Google Scholar 

  44. Balakrishna AM, Basak S, Manimekalai MS, GrĂ¼ber G (2015) Crystal structure of subunits D and F in complex gives insight into energy transmission of the eukaryotic V-ATPase from Saccharomyces cerevisiae. J Biol Chem 290:3183–3196

    Article  CAS  PubMed  Google Scholar 

  45. Smith AN, Skaug J, Choate KA et al (2000) Mutations in ATP6N1B, encoding a new kidney vacuolar proton pump 116-kD subunit, cause recessive distal renal tubular acidosis with preserved hearing. Nat Genet 26:71–75

    Article  CAS  PubMed  Google Scholar 

  46. Frattini A, Orchard PJ, Sobacchi C et al (2000) Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet 25:343–346

    Article  CAS  PubMed  Google Scholar 

  47. Kornak U, Reynders E, Dimopoulou A et al (2008) Impaired glycosylation and cutis laxa caused by mutations in the vesicular H + -ATPase subunit ATP6V0A2. Nat Genet 40:32–34

    Article  CAS  PubMed  Google Scholar 

  48. Hucthagowder V, Morava E, Kornak U et al (2009) Loss-of-function mutations in ATP6V0A2 impair vesicular trafficking, tropoelastin secretion and cell survival. Hum Mol Genet 18:2149–2165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Morava E, Guillard M, Lefeber DJ, Wevers RA (2009) Autosomal recessive cutis laxa syndrome revisited. Eur J Hum Genet 17:1099–1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sennoune SR, Bakunts K, Martinez GM et al (2004) Vacuolar H + -ATPase in human breast cancer cells with distinct metastatic potential: distribution and functional activity. Am J Physiol Cell Physiol 286:C1443–C1452

    Article  CAS  PubMed  Google Scholar 

  51. Hinton A, Sennoune SR, Bond S et al (2009) Function of a subunit isoforms of the V-ATPase in pH homeostasis and in vitro invasion of MDA-MB231 human breast cancer cells. J Biol Chem 284:16400–16408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Capecci J, Forgac M (2013) The function of vacuolar ATPase (V-ATPase) a subunit isoforms in invasiveness of MCF10a and MCF10CA1a human breast cancer cells. J Biol Chem 288:32731–32741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cotter K, Capecci J, Sennoune S et al (2015) Activity of plasma membrane V-ATPases is critical for the invasion of MDA-MB231 breast cancer cells. J Biol Chem 290:3680–3692

    Article  CAS  PubMed  Google Scholar 

  54. Qi J, Forgac M (2007) Cellular environment is important in controlling V-ATPase dissociation and its dependence on activity. J Biol Chem 282:24743–24751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Benlekbir S, Bueler SA, Rubinstein JL (2012) Structure of the vacuolar-type ATPase from Saccharomyces cerevisiae at 11Å resolution. Nat Struct Mol Biol 19:1356–1362

    Google Scholar 

  56. Zhao J, Benlekbir S, Rubinstein JL (2015) Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase. Nature 521:241–245

    Article  CAS  PubMed  Google Scholar 

  57. Muench SP, Scheres SH, Huss M et al (2014) Subunit positioning and stator filament stiffness in regulation and power transmission in the V1 motor of the Manduca sexta V-ATPase. J Mol Biol 426:286–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Radermacher M, Ruiz T, Wieczorek H, GrĂ¼ber G (2001) The structure of the V1-ATPase determined by three-dimensional electron microscopy of single particles. J Struct Biol 135:26–37

    Article  CAS  PubMed  Google Scholar 

  59. Hilario E, Gogarten JP (1998) The prokaryote-to-eukaryote transition reflected in the evolution of the V/F/A-ATPase catalytic and proteolipid subunits. J Mol Evol 46:703–715

    Article  CAS  PubMed  Google Scholar 

  60. Basak S, Lim J, Manimekalai MS, Balakrishna AM, GrĂ¼ber G (2013) Crystal and NMR structures give insights into the role and dynamics of subunit F of the eukaryotic V-ATPase from Saccharomyces cerevisiae. J Biol Chem 288:11930–11939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jefferies KC, Forgac M (2008) Subunit H of the vacuolar H + -ATPase inhibits ATP hydrolysis by the free V1 domain by interaction with the rotary subunit F. J Biol Chem 283:4512–4519

    Article  CAS  PubMed  Google Scholar 

  62. Sagermann M, Stevens TM, Matthews BW (2001) Crystal structure of the regulatory subunit H of the V-type ATPase of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 98:7134–7139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Oot RA, Huang LS, Berry EA, Wilkens S (2012) Crystal structure of the yeast vacuolar ATPase heterotrimeric EGC(head) peripheral stalk complex. Structure 20:1881–1892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rishikesan S, GrĂ¼ber G (2011) Structural elements of the C-terminal domain of subunit E (E133-222) from the Saccharomyces cerevisiae V1Vo ATPase determined by solution NMR spectroscopy. J Bioenerg Biomembr 43:447–455

    Article  CAS  PubMed  Google Scholar 

  65. Vitavska O, Merzendorfer H, Wieczorek H (2005) The V-ATPase subunit C binds to polymeric F-actin as well as to monomeric G-actin and induces cross-linking of actin filaments. J Biol Chem 280:1070–1076

    Article  CAS  PubMed  Google Scholar 

  66. ArmbrĂ¼ster A, Svergun DI, Coskun U et al (2004) Structural analysis of the stalk subunit Vma5p of the yeast V-ATPase in solution. FEBS Lett 570:119–125

    Google Scholar 

  67. Drory O, Frolow F, Nelson N (2004) Crystal structure of yeast V-ATPase subunit C reveals its stator function. EMBO Rep 5:1148–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. AmbrĂ¼ster A, Hohn C, Hermesdorf A et al (2005) Evidence for major structural changes in subunit C of the vacuolar ATPase due to nucleotide binding. FEBS Lett 579:1961–1967

    Google Scholar 

  69. Hong-Hermesdorf A, Brux A, GrĂ¼ber A, GrĂ¼ber G, Schumacher K (2006) A WNK kinase binds and phosphorylates V-ATPase subunit C. FEBS Lett 580:932–939

    Google Scholar 

  70. Graham LA, Flannery AR, Stevens TH (2003) Structure and assembly of the yeast V-ATPase. J Bioenerg Biomembr 35:301–312

    Article  CAS  PubMed  Google Scholar 

  71. Wilkens S, Inoue T, Forgac M (2004) Three-dimensional structure of the vacuolar ATPase. Localization of subunit H by difference imaging and chemical cross-linking. J Biol Chem 279:41942–41949

    Article  CAS  PubMed  Google Scholar 

  72. Dip PV, Saw WG, Roessle M, Marshansky V, GrĂ¼ber G (2012) Solution structure of subunit a, a104-363, of the Saccharomyces cerevisiae V-ATPase and the importance of its C-terminus in structure formation. J Bioenerg Biomembr 44:341–350

    Article  CAS  PubMed  Google Scholar 

  73. Smith AN, Finberg KE, Wagner CA et al (2001) Molecular cloning and characterization of Atp6n1b: a novel fourth murine vacuolar H + -ATPase a-subunit gene. J Biol Chem 276:42382–42388

    Article  CAS  PubMed  Google Scholar 

  74. Ochotny N, van Vliet A, Chan N et al (2006) Effects of human a3 and a4 mutations that result in osteopetrosis and distal renal tubular acidosis on yeast V-ATPase expression and activity. J Biol Chem 281:26102–26111

    Article  CAS  PubMed  Google Scholar 

  75. Toyomura T, Oka T, Yamaguchi C et al (2000) Three subunit a isoforms of mouse vacuolar H + -ATPase. Preferential expression of the a3 isoform during osteoclast differentiation. J Biol Chem 275:8760–8765

    Article  CAS  PubMed  Google Scholar 

  76. Toei M, Toei S, Forgac M (2011) Definition of membrane topology and identification of residues important for transport in subunit a of the vacuolar ATPase. J Biol Chem 286:35176–35186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nishi T, Forgac M (2000) Molecular cloning and expression of three isoforms of the 100-kDa a subunit of the mouse vacuolar proton-translocating ATPase. J Biol Chem 275:6824–6830

    Article  CAS  PubMed  Google Scholar 

  78. Duarte AM, de Jong ER, Wechselberger R et al (2007) Segment TM7 from the cytoplasmic hemi-channel from VO-H + -V-ATPase includes a flexible region that has a potential role in proton translocation. Biochim Biophys Acta 1768:2263–2270

    Article  CAS  PubMed  Google Scholar 

  79. Su Y, Zhou A, Al-Lamki RS, Karet FE (2003) The a-subunit of the V-type H + -ATPase interacts with phosphofructokinase-1 in humans. J Biol Chem 278:20013–20018

    Article  CAS  PubMed  Google Scholar 

  80. Flannery AR, Graham LA, Stevens TH (2004) Topological characterization of the c, c′, and c″ subunits of the vacuolar ATPase from the yeast Saccharomyces cerevisiae. J Biol Chem 279:39856–39862

    Article  CAS  PubMed  Google Scholar 

  81. Wang Y, Cipriano DJ, Forgac M (2007) Arrangement of subunits in the proteolipid ring of the V-ATPase. J Biol Chem 282:34058–34065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Muench SP, Rawson S, Eyraud V et al (2014) PA1b inhibitor binding to subunits c and e of the vacuolar ATPase reveals its insecticidal mechanism. J Biol Chem 289:16399–16408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Junge W, Nelson N (2005) Structural biology. Nature’s rotary electromotors. Science 308:642–644

    Article  CAS  PubMed  Google Scholar 

  84. Wang Y, Inoue T, Forgac M (2005) Subunit a of the yeast V-ATPase participates in binding of bafilomycin. J Biol Chem 280:40481–40488

    Article  CAS  PubMed  Google Scholar 

  85. Bowman BJ, Bowman EJ (2002) Mutations in subunit C of the vacuolar ATPase confer resistance to bafilomycin and identify a conserved antibiotic binding site. J Biol Chem 277:3965–3972

    Article  CAS  PubMed  Google Scholar 

  86. Bowman EJ, Bowman BJ (2005) V-ATPases as drug targets. J Bioenerg Biomembr 37:431–435

    Article  CAS  PubMed  Google Scholar 

  87. Umata T, Moriyama Y, Futai M, Mekada E (1990) The cytotoxic action of diphtheria toxin and its degradation in intact Vero cells are inhibited by bafilomycin A1, a specific inhibitor of vacuolar-type H + -ATPase. J Biol Chem 265:21940–21945

    CAS  PubMed  Google Scholar 

  88. Yoshimori T, Yamamoto A, Moriyama Y et al (1991) Bafilomycin A1, a specific inhibitor of vacuolar-type H + -ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J Biol Chem 266:17707–17712

    CAS  PubMed  Google Scholar 

  89. Brown D, Marshansky V (2004) Renal V-ATPase: physiology and pathophysiology. In: Futai M, Wada Y, Kaplan JH (eds) Handbook of ATPases. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 413–442

    Google Scholar 

  90. Brown D, Breton S, Ausiello DA, Marshansky V (2009) Sensing, signaling and sorting events in kidney epithelial cell physiology. Traffic 10:275–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Brown D, Paunescu TG, Breton S, Marshansky V (2009) Regulation of the V-ATPase in kidney epithelial cells: dual role in acid–base homeostasis and vesicle trafficking. J Exp Biol 212:1762–1772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Shum WW, Da Silva N, Brown D, Breton S (2009) Regulation of luminal acidification in the male reproductive tract via cell-cell crosstalk. J Exp Biol 21:1753–1761

    Article  CAS  Google Scholar 

  93. Breton S, Brown D (2013) Regulation of luminal acidification by the V-ATPase. Physiology (Bethesda) 28:318–329

    CAS  Google Scholar 

  94. Sun-Wada GH, Wada Y (2013) Vacuolar-type proton pump ATPases: acidification and pathological relationships. Histol Histopathol 28:208–215

    Google Scholar 

  95. Bhargava A, Voronov I, Wang Y, Glogauer M, Kartner N, Manolson MF (2012) Osteopetrosis mutation R444L causes endoplasmic reticulum retention and misprocessing of vacuolar H + -ATPase a3 subunit. J Biol Chem 287:26829–26839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kartner N, Manolson MF (2012) V-ATPase subunit interactions: the long road to therapeutic targeting. Curr Protein Pept Sci 13:164–179

    Article  CAS  PubMed  Google Scholar 

  97. Toro EJ, Ostrov DA, Wronski TJ, Holliday LS (2012) Rational identification of enoxacin as a novel V-ATPase-directed osteoclast inhibitor. Curr Protein Pept Sci 13:80–191

    Article  Google Scholar 

  98. Steinberg BE, Touret N, Vargas-Caballero M, Grinstein S (2007) In situ measurement of the electrical potential across the phagosomal membrane using FRET and its contribution to the proton-motive force. Proc Natl Acad Sci U S A 104:9523–9528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Scheel O, Zdebik AA, Lourdel S, Jentsch TJ (2005) Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins. Nature 436:424–427

    Article  CAS  PubMed  Google Scholar 

  100. Jentsch TJ (2007) Chloride and the endosomal-lysosomal pathway: emerging roles of CLC chloride transporters. J Physiol 578:633–640

    Article  CAS  PubMed  Google Scholar 

  101. Stauber T, Weinert S, Jentsch TJ (2012) Cell biology and physiology of CLC chloride channels and transporters. Compr Physiol 2:1701–1744

    PubMed  Google Scholar 

  102. Orlowski J, Grinstein S (2007) Emerging roles of alkali cation/proton exchangers in organellar homeostasis. Curr Opin Cell Biol 19:483–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Manolson MF, Wu B, Proteau D et al (1994) STV1 gene encodes functional homologue of 95-kDa yeast vacuolar H + -ATPase subunit Vph1p. J Biol Chem 269:14064–14074

    CAS  PubMed  Google Scholar 

  104. Kawasaki-Nishi S, Bowers K, Nishi T et al (2001) The amino-terminal domain of the vacuolar proton-translocating ATPase a subunit controls targeting and in vivo dissociation, and the carboxyl-terminal domain affects coupling of proton transport and ATP hydrolysis. J Biol Chem 276:47411–47420

    Article  CAS  PubMed  Google Scholar 

  105. Morel N, Dedieu JC, Philippe JM (2003) Specific sorting of the a1 isoform of the V-H + ATPase a subunit to nerve terminals where it associates with both synaptic vesicles and the presynaptic plasma membrane. J Cell Sci 116:4751–4762

    Article  CAS  PubMed  Google Scholar 

  106. Hiesinger PR, Fayyazuddin A, Mehta SQ et al (2005) The v-ATPase VO subunit a1 is required for a late step in synaptic vesicle exocytosis in Drosophila. Cell 121:607–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Saw NM, Kang SY, Parsaud L et al (2011) Vacuolar H + -ATPase subunits Voa1 and Voa2 cooperatively regulate secretory vesicle acidification, transmitter uptake, and storage. Mol Biol Cell 22:3394–3409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Peri F, Nusslein-Volhard C (2008) Live imaging of neuronal degradation by microglia reveals a role for VO-ATPase a1 in phagosomal fusion in vivo. Cell 133:916–927

    Google Scholar 

  109. Maranda B, Brown D, Bourgoin S et al (2001) Intra-endosomal pH-sensitive recruitment of the Arf-nucleotide exchange factor ARNO and Arf6 from cytoplasm to proximal tubule endosomes. J Biol Chem 276:18540–18550

    Article  CAS  PubMed  Google Scholar 

  110. Marshansky V, Ausiello DA, Brown D (2002) Physiological importance of endosomal acidification: potential role in proximal tubulopathies. Curr Opin Nephrol Hypertens 11:527–537

    Article  PubMed  Google Scholar 

  111. Sun-Wada GH, Tabata H, Kawamura K et al (2009) Direct recruitment of H + -ATPase from lysosomes for phagosomal acidification. J Cell Sci 122:2504–2513

    Article  CAS  PubMed  Google Scholar 

  112. Toei M, Saum R, Forgac M (2010) Regulation and isoform function of the V-ATPases. Biochemistry 49:4715–4723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sun-Wada GH, Imai-Senga Y, Yamamoto A, Murata Y, Hirata T, Wada Y, Futai M (2002) A proton pump ATPase with testis-specific E1-subunit isoform required for acrosome acidification. J Biol Chem 279:18098–18105

    Article  CAS  Google Scholar 

  114. Hayashi K, Sun-Wada GH, Wada Y et al (2008) Defective assembly of a hybrid vacuolar H + -ATPase containing the mouse testis-specific E1 isoform and yeast subunits. Biochim Biophys Acta 1777:1370–1377

    Google Scholar 

  115. Okamoto-Terry H, Umeki K, Nakanishi-Matsui M, Futai M (2013) Glu-44 in the amino-terminal alpha-helix of yeast vacuolar ATPase E subunit (Vma4p) has a role for VoV1 assembly. J Biol Chem 288:36236–36243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Smardon AM, Tarsio M, Kane PM (2002) The RAVE complex is essential for stable assembly of the yeast V-ATPase. J Biol Chem 277:13831–13839

    Article  CAS  PubMed  Google Scholar 

  117. Smardon AM, Diab HI, Tarsio M et al (2014) The RAVE complex is an isoform-specific V-ATPase assembly factor in yeast. Mol Biol Cell 25:356–367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Bond S, Forgac M (2008) The Ras/cAMP/protein kinase A pathway regulates glucose-dependent assembly of the vacuolar H + -ATPase in yeast. J Biol Chem 283:36513–36521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lu M, Holliday LS, Zhang L et al (2001) Interaction between aldolase and vacuolar H + -ATPase: evidence for direct coupling of glycolysis to the ATP-hydrolyzing proton pump. J Biol Chem 276:30407–30413

    Article  CAS  PubMed  Google Scholar 

  120. Lu M, Sautin YY, Holliday LS, Gluck SL (2004) The glycolytic enzyme aldolase mediates assembly, expression, and activity of vacuolar H + -ATPase. J Biol Chem 279:8732–8739

    Article  CAS  PubMed  Google Scholar 

  121. Lu M, Ammar D, Ives H et al (2007) Physical interaction between aldolase and vacuolar H + -ATPase is essential for the assembly and activity of the proton pump. J Biol Chem 282:24495–24503

    Article  CAS  PubMed  Google Scholar 

  122. Marshansky V (2014) Role of V-ATPase, cytohesin-2/Arf6 and aldolase in regulation of endocytosis: Implication for diabetic nephropathy. In: Nakamura S (ed) Handbook of H + -ATPases. Pan Stanford Publishing Pte. Ltd, Singapore, pp 169–199

    Chapter  Google Scholar 

  123. Cohen S (1962) Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. J Biol Chem 237:1555–1562

    CAS  PubMed  Google Scholar 

  124. Cohen S, Carpenter G, King L (1980) Epidermal growth factor-receptor-protein kinase interactions: Co-purification of receptor and epidermal growth factor-enhanced phosphorylation activity. J Biol Chem 255:4834–4842

    CAS  PubMed  Google Scholar 

  125. Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, Carotenuto A, De Feo G, Caponigro F, Salomon DS (2006) Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 366:2–16

    Article  CAS  PubMed  Google Scholar 

  126. Tomas A, Futter CE, Eden ER (2014) EGF receptor trafficking: consequences for signaling and cancer. Trends Cell Biol 24:26–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  128. Bill A, Schmitz A, Albertoni B et al (2010) Cytohesins are cytoplasmic ErbB receptor activators. Cell 143:201–211

    Article  CAS  PubMed  Google Scholar 

  129. Bill A, Schmitz A, Konig K et al (2013) Anti-proliferative effect of cytohesin inhibition in gefitinib-resistant lung cancer cells. PLoS One 7, e41179

    Article  CAS  Google Scholar 

  130. Junnila RK, List EO, Berryman DE et al (2013) The GH/IGF-1 axis in ageing and longevity. Nat Rev Endocrinol 9:366–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Berryman DE, Glad CA, List EO, Johannsson G (2013) The GH/IGF-1 axis in obesity: pathophysiology and therapeutic considerations. Nat Rev Endocrinol 9:346–356

    Article  CAS  PubMed  Google Scholar 

  132. Song YH, Song JL, Delafontaine P, Godard MP (2013) The therapeutic potential of IGF-I in skeletal muscle repair. Trends Endocrinol Metab 24:310–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. O'Callaghan KM, Ayllon V, O'Keeffe J et al (2010) Heme-binding protein HRG-1 is induced by insulin-like growth factor I and associates with the vacuolar H + -ATPase to control endosomal pH and receptor trafficking. J Biol Chem 285:381–391

    Article  PubMed  CAS  Google Scholar 

  134. Fogarty FM, O'Keeffe J, Zhadanov A, Papkovsky D, Ayllon V, O'Connor R (2014) HRG-1 enhances cancer cell invasive potential and couples glucose metabolism to cytosolic/extracellular pH gradient regulation by the vacuolar-H + -ATPase. Oncogene 33:4653–4663

    Article  CAS  PubMed  Google Scholar 

  135. Niehrs C (2012) The complex world of WNT receptor signaling. Nat Rev Mol Cell Biol 13:767–779

    Article  CAS  PubMed  Google Scholar 

  136. Niehrs C, Acebron SP (2012) Mitotic and mitogenic Wnt signaling. EMBO J 31:2705–2713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Cruciat CM, Ohkawara B, Acebron SP et al (2010) Requirement of prorenin receptor and vacuolar H + -ATPase-mediated acidification for Wnt signaling. Science 327:459–463

    Article  CAS  PubMed  Google Scholar 

  138. Niehrs C, Boutros M (2010) Trafficking, acidification, and growth factor signaling. Sci Signal 3:26

    Article  CAS  Google Scholar 

  139. Nguyen G, Delarue F, Burckle C et al (2002) Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest 109:1417–1427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Danser AN (2009) (Pro)renin receptor and vacuolar H + -ATPase. Hypertension 54:219–221

    Article  CAS  PubMed  Google Scholar 

  141. Ichihara A, Kinouchi K (2011) Current knowledge of (pro)renin receptor as an accessory protein of vacuolar H + -ATPase. J Renin Angiotensin Aldosterone Syst 12:638–640

    Article  CAS  PubMed  Google Scholar 

  142. Kinouchi K, Ichihara A, Sano M et al (2010) The (pro)renin receptor/ATP6AP2 is essential for vacuolar H + -ATPase assembly in murine cardiomyocytes. Circ Res 107:30–34

    Article  CAS  PubMed  Google Scholar 

  143. Danser AH, Deinum J (2005) Renin, prorenin and the putative (pro)renin receptor. Hypertension 46:1069–1076

    Article  CAS  PubMed  Google Scholar 

  144. Kopan R, Ilagan MX (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137:216–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Wang Z, Li Y, Sarkar FH (2010) Notch signaling proteins: legitimate targets for cancer therapy. Curr Protein Pept Sci 11:398–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Vaccari T, Duchi S, Cortese K et al (2010) The vacuolar ATPase is required for physiological as well as pathological activation of the Notch receptor. Development 137:1825–1832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Yan Y, Denef N, Schupbach T (2009) The vacuolar proton pump, V-ATPase, is required for notch signaling and endosomal trafficking in Drosophila. Dev Cell 17:387–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Sethi N, Yan Y, Quek D, Schupbach T, Kang Y (2010) Rabconnectin-3 is a functional regulator of mammalian Notch signaling. J Biol Chem 285:34757–34764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Seol JH, Shevchenko A, Deshaies RJ (2001) Skp1 forms multiple protein complexes, including RAVE, a regulator of V-ATPase assembly. Nat Cell Biol 3:384–391

    Article  CAS  PubMed  Google Scholar 

  150. Bourne HR, Sanders DA, McCormick F (1990) The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348:125–132

    Article  CAS  PubMed  Google Scholar 

  151. Donaldson JG, Jackson CL (2000) Regulators and effectors of the ARF GTPases. Curr Opin Cell Biol 12:475–482

    Article  CAS  PubMed  Google Scholar 

  152. Casanova JE (2007) Regulation of Arf activation: the Sec7 family of guanine nucleotide exchange factors. Traffic 8:1476–1485

    Article  CAS  PubMed  Google Scholar 

  153. D'Souza-Schorey C, Chavrier P (2006) ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol 7:347–358

    Article  PubMed  CAS  Google Scholar 

  154. Hafner M, Schmitz A, Grune I et al (2006) Inhibition of cytohesins by SecinH3 leads to hepatic insulin resistance. Nature 444:941–944

    Article  CAS  PubMed  Google Scholar 

  155. Hafner M, Vianini E, Albertoni B et al (2008) Displacement of protein-bound aptamers with small molecules screened by fluorescence polarization. Nat Protoc 3:579–587

    Article  CAS  PubMed  Google Scholar 

  156. Fuss B, Becker T, Zinke I, Hoch M (2006) The cytohesin Steppke is essential for insulin signalling in Drosophila. Nature 444:945–948

    Article  CAS  PubMed  Google Scholar 

  157. Jackson C (2006) Diabetes: kicking off the insulin cascade. Nature 444:833–834

    Article  CAS  PubMed  Google Scholar 

  158. Lim J, Zhou M, Veenstra TD, Morrison DK (2010) The CNK1 scaffold binds cytohesins and promotes insulin pathway signaling. Genes Dev 24:1496–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Mannell HK, Pircher J, Chaudhry DI et al (2012) ARNO regulates VEGF-dependent tissue responses by stabilizing endothelial VEGFR-2 surface expression. Cardiovasc Res 93:111–119

    Article  CAS  PubMed  Google Scholar 

  160. Kolanus W, Nagel W, Schiller B et al (1996) Alpha L beta 2 integrin/LFA-1 binding to ICAM-1 induced by cytohesin-1, a cytoplasmic regulatory molecule. Cell 86:233–242

    Article  CAS  PubMed  Google Scholar 

  161. Kolanus W (2007) Guanine nucleotide exchange factors of the cytohesin family and their roles in signal transduction. Immunol Rev 218:102–113

    Article  CAS  PubMed  Google Scholar 

  162. Anisimov AN, Bartke A (2013) The key role of growth hormone-insulin-IGF-1 signaling in aging and cancer. Crit Rev Oncol Hematol 87:201–223

    Article  PubMed  PubMed Central  Google Scholar 

  163. Anisimov AN (2015) Conservative growth hormone/IGF-1 and mTOR signaling pathways as a target for aging and cancer prevention: do we really have an antiaging drug? Interdiscip Top Gerontol 40:177–188

    Article  PubMed  Google Scholar 

  164. Blagosklonny MV (2013) Selective anti-cancer agents as anti-aging drugs. Cancer Biol Ther 14:1092–1097

    Article  PubMed  PubMed Central  Google Scholar 

  165. Marshansky V, Bourgoin S, Londono I et al (1997) Identification of ADP-ribosylation factor-6 in brush-border membrane and early endosomes of human kidney proximal tubules. Electrophoresis 18:538–547

    Article  CAS  PubMed  Google Scholar 

  166. Marshansky V, Bourgoin S, Londono I et al (1997) Receptor-mediated endocytosis in kidney proximal tubules: recent advances and hypothesis. Electrophoresis 18:2661–2676

    Article  CAS  PubMed  Google Scholar 

  167. Merkulova M, Hurtado-Lorenzo A, Hosokawa H et al (2011) Aldolase directly interacts with ARNO and modulates cell morphology and acidic vesicle distribution. Am J Physiol Cell Physiol 300(6):1442–1455

    Article  CAS  Google Scholar 

  168. Oka T, Murata Y, Namba M et al (2001) a4, a unique kidney-specific isoform of mouse vacuolar H + -ATPase subunit a. J Biol Chem 276:40050–40054

    Article  CAS  PubMed  Google Scholar 

  169. Pietrement C, Sun-Wada GH, Da Silva N et al (2006) Distinct expression patterns of different subunit isoforms of the V-ATPase in the rat epididymis. Biol Reprod 74:185–194

    Article  CAS  PubMed  Google Scholar 

  170. Martinez-Zaguilan R, Lynch RM, Martinez GM, Gillies RJ (1993) Vacuolar-type H + -ATPases are functionally expressed in plasma membranes of human tumor cells. Am J Physiol 265:C1015–C1029

    CAS  PubMed  Google Scholar 

  171. Hendrix A, Sormunen R, Westbroek W et al (2013) Vacuolar H+ ATPase expression and activity is required for Rab27B-dependent invasive growth and metastasis of breast cancer. Int J Cancer 133:843–854

    Article  CAS  PubMed  Google Scholar 

  172. Graham RM, Thompson JW, Webster KA (2014) Inhibition of the vacuolar ATPase induces Bnip3-dependent death of cancer cells and a reduction in tumor burden and metastasis. Oncotarget 5:1162–1173

    Article  PubMed  Google Scholar 

  173. Schempp CM, von Schwarzenberg K, Schreiner L et al (2014) V-ATPase inhibition regulates anoikis resistance and metastasis of cancer cells. Mol Cancer Ther 13:926–937

    Article  CAS  PubMed  Google Scholar 

  174. Mei F, You J, Liu B et al (2015) LASS2/TMSG1 inhibits growth and invasion of breast cancer cell in vitro through regulation of vacuolar ATPase activity. Tumour Biol 36:2831–2844

    Article  CAS  PubMed  Google Scholar 

  175. Sennoune SR, Luo D, Martinez-Zaguilan R (2004) Plasmalemmal vacuolar-type H + -ATPase in cancer biology. Cell Biochem Biophys 40:185–206

    Article  CAS  PubMed  Google Scholar 

  176. Sennoune SR, Martinez-Zaguilan R (2007) Plasmalemmal vacuolar H + -ATPases in angiogenesis, diabetes and cancer. J Bioenerg Biomembr 39:427–433

    Article  CAS  PubMed  Google Scholar 

  177. Sennoune SR, Martinez-Zaguilan R (2012) Vacuolar H + -ATPase signaling pathway in cancer. Curr Protein Pept Sci 13:152–163

    Article  CAS  PubMed  Google Scholar 

  178. Kulshrestha A, Katara GK, Ibrahim S et al (2015) Vacuolar ATPase ‘a2’ isoform exhibits distinct cell surface accumulation and modulates matrix metalloproteinase activity in ovarian cancer. Oncotarget 6:3797–3810

    Article  PubMed  PubMed Central  Google Scholar 

  179. Ntrivalas E, Derks R, Gilman-Sachs A et al (2007) Novel role for the N-terminus domain of the a2 isoform of vacuolar ATPase in interleukin-1beta production. Hum Immunol 68:469–477

    Article  CAS  PubMed  Google Scholar 

  180. Ntrivalas E, Gilman-Sachs A, Kwak-Kim J, Beaman K (2007) The N-terminus domain of the a2 isoform of vacuolar ATPase can regulate interleukin-1beta production from mononuclear cells in co-culture with JEG-3 choriocarcinoma cells. Am J Reprod Immunol 57:201–209

    Article  CAS  PubMed  Google Scholar 

  181. Kwong C, Gilman-Sachs A, Beaman K (2011) Tumor-associated a2 vacuolar ATPase acts as a key mediator of cancer-related inflammation by inducing pro-tumorigenic properties in monocytes. J Immunol 186:1781–1789

    Article  CAS  PubMed  Google Scholar 

  182. Katara GK, Jaiswal MK, Kulshrestha A et al (2014) Tumor-associated vacuolar ATPase subunit promotes tumorigenic characteristics in macrophages. Oncogene 33:5649–5654

    Article  CAS  PubMed  Google Scholar 

  183. Ziyad S, Iruela-Arispe ML (2011) Molecular mechanisms of tumor angiogenesis. Genes Cancer 2:1085–1096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Rojas JD, Sennoune SR, Maiti D et al (2004) Plasmalemmal V-H + -ATPases regulate intracellular pH in human lung microvascular endothelial cells. Biochem Biophys Res Commun 320:1123–1132

    Article  CAS  PubMed  Google Scholar 

  185. Rojas JD, Sennoune SR, Maiti D et al (2006) Vacuolar-type H + -ATPases at the plasma membrane regulate pH and cell migration in microvascular endothelial cells. Am J Physiol Heart Circ Physiol 291:H1147–H1157

    Article  CAS  PubMed  Google Scholar 

  186. Sennoune SR, Arutunyan A, del Rosario C et al (2014) V-ATPase regulates communication between microvascular endothelial cells and metastatic cells. Cell Mol Biol (Noisy-le-grand) 60:19–25

    CAS  Google Scholar 

  187. Nishisho T, Hata K, Nakanishi M et al (2011) The a3 isoform vacuolar type H(+)-ATPase promotes distant metastasis in the mouse B16 melanoma cells. Mol Cancer Res 9:845–855

    Article  CAS  PubMed  Google Scholar 

  188. Xu J, Xie R, Liu X et al (2012) Expression and functional role of vacuolar H(+)-ATPase in human hepatocellular carcinoma. Carcinogenesis 33:2432–2440

    Article  CAS  PubMed  Google Scholar 

  189. Perez-Sayans M, Garcia-Garcia A, Reboiras-Lopez MD, Gandara-Vila P (2009) Role of V-ATPases in solid tumors: importance of the subunit C. Int J Oncol 34:1513–1520

    Article  CAS  PubMed  Google Scholar 

  190. Huang L, Lu Q, Han Y et al (2012) ABCG2/V-ATPase was associated with the drug resistance and tumor metastasis of esophageal squamous cancer cells. Diagn Pathol 7:180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Lu Q, Lu S, Huang L et al (2013) The expression of V-ATPase is associated with drug resistance and pathology of non-small-cell lung cancer. Diagn Pathol 8:145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Liu P, Chen H, Han L et al (2015) Expression and role of V1A subunit of V-ATPases in gastric cancer cells. Int J Clin Oncol 20(4):725–735

    Article  CAS  PubMed  Google Scholar 

  193. Lozupone F, Borghi M, Marzoli F et al (2015) TM9SF4 is a novel V-ATPase-interacting protein that modulates tumor pH alterations associated with drug resistance and invasiveness of colon cancer cells. Oncogene (PMID: 25659576)

    Google Scholar 

  194. Chung C, Mader CC, Schmitz JC et al (2011) The vacuolar-ATPase modulates matrix metalloproteinase isoforms in human pancreatic cancer. Lab Invest 91:732–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Sun-Wada GH, Toyomura T, Murata Y et al (2006) The a3 isoform of V-ATPase regulates insulin secretion from pancreatic beta-cells. J Cell Sci 119:4531–4540

    Article  CAS  PubMed  Google Scholar 

  196. Twells RC, Mein CA, Payne F et al (2003) Linkage and association mapping of the LRP5 locus on chromosome 11q13 in type 1 diabetes. Hum Genet 113:99–105

    CAS  PubMed  Google Scholar 

  197. Toyomura T, Murata Y, Yamamoto A et al (2003) From lysosomes to the plasma membrane: localization of vacuolar-type H + -ATPase with the a3 isoform during osteoclast differentiation. J Biol Chem 278:22023–22030

    Article  CAS  PubMed  Google Scholar 

  198. Scimeca JC, Franchi A, Trojani C et al (2000) The gene encoding the mouse homologue of the human osteoclast-specific 116-kDa V-ATPase subunit bears a deletion in osteosclerotic (oc/oc) mutants. Bone 26:207–213

    Article  CAS  PubMed  Google Scholar 

  199. Kartner N, Yao Y, Bhargava A, Manolson MF (2013) Topology, glycosylation and conformational changes in the membrane domain of the vacuolar H + -ATPase a subunit. J Cell Biochem 114:1474–1487

    Article  CAS  PubMed  Google Scholar 

  200. Efeyan A, Zoncu R, Chang S et al (2013) Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival. Nature 493:679–683

    Article  CAS  PubMed  Google Scholar 

  201. Parkhitko AA, Favorova OO, Khabibullin DI et al (2014) Kinase mTOR: regulation and role in maintenance of cellular homeostasis, tumor development, and aging. Biochemistry (Mosc) 79:88–101

    Article  CAS  Google Scholar 

  202. Blagosklonny MV (2010) Calorie restriction: decelerating mTOR-driven aging from cells to organisms (including humans). Cell Cycle 9:683–688

    Article  CAS  PubMed  Google Scholar 

  203. Blagosklonny MV (2011) Molecular damage in cancer: an argument for mTOR-driven aging. Aging (Albany NY) 3:1130–1141

    Article  CAS  Google Scholar 

  204. Blagosklonny MV (2013) M(o)TOR of aging: mTOR as a universal molecular hypothalamus. Aging (Albany NY) 5:490–494

    Article  CAS  Google Scholar 

  205. Lamming DW, Ye L, Katajisto P et al (2012) Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335:1638–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Flinn RJ, Backer JM (2010) mTORC1 signals from late endosomes: taking a TOR of the endocytic system. Cell Cycle 9:1869–1870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Flinn RJ, Yan Y, Goswami S et al (2010) The late endosome is essential for mTORC1 signaling. Mol Biol Cell 21:833–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Bar-Peled L, Schweitzer LD, Zoncu R, Sabatini DM (2012) Ragulator is a GEF for the Rag GTPases that signal amino acid levels to mTORC1. Cell 150:1196–1208

    Google Scholar 

  209. Settembre C, Zoncu R, Medina DL et al (2012) A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J 31:1095–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Xu J, Cheng T, Feng HT, Pavlos NJ, Zheng MH (2007) Structure and function of V-ATPases in osteoclasts: potential therapeutic targets for the treatment of osteolysis. Histol Histopathol 22:443–454

    CAS  PubMed  Google Scholar 

  211. Qin A, Cheng TS, Pavlos NJ et al (2012) V-ATPases in osteoclasts: structure, function and potential inhibitors of bone resorption. Int J Biochem Cell Biol 44:1422–1435

    Article  CAS  PubMed  Google Scholar 

  212. Qin A, Cheng TS, Lin Z et al (2012) Prevention of wear particle-induced osteolysis by a novel V-ATPase inhibitor saliphenylhalamide through inhibition of osteoclast bone resorption. PLoS One 7, e34132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Lebreton S, Jaunbergs J, Roth MG et al (2008) Evaluating the potential of vacuolar ATPase inhibitors as anticancer agents and multigram synthesis of the potent salicylihalamide analog saliphenylhalamide. Bioorg Med Chem Lett 18:5879–5883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Perez-Sayans M, Somoza-Martin JM, Barros-Angueira F et al (2009) V-ATPase inhibitors and implication in cancer treatment. Cancer Treat Rev 35:707–713

    Article  CAS  PubMed  Google Scholar 

  215. You H, Jin J, Shu H, Yu B et al (2009) Small interfering RNA targeting the subunit ATP6L of proton pump V-ATPase overcomes chemoresistance of breast cancer cells. Cancer Lett 280:110–119

    Article  CAS  PubMed  Google Scholar 

  216. Niikura K (2006) Vacuolar ATPase as a drug discovery target. Drug News Perspect 19:139–144

    Article  CAS  PubMed  Google Scholar 

  217. Huss M, Wieczorek H (2009) Inhibitors of V-ATPases: old and new players. J Exp Biol 212:341–346

    Article  CAS  PubMed  Google Scholar 

  218. Pommier Y, Cherfils J (2005) Interfacial inhibition of macromolecular interactions: Nature's paradigm for drug discovery. Trends Pharmacol Sci 26:138–145

    Google Scholar 

  219. Mullard A (2012) Protein-protein interaction inhibitors get into the groove. Nat Rev Drug Discov 11:173–175

    Article  CAS  PubMed  Google Scholar 

  220. Azzarito V, Long K, Murphy NS, Wilson AJ (2013) Inhibition of alpha-helix-mediated protein-protein interactions using designed molecules. Nat Chem 5:161–173

    Article  CAS  PubMed  Google Scholar 

  221. Merkulova M, Păunescu TG, Azroyan A et al (2015) Mapping the H + -V-ATPase interactome: identification of proteins involved in trafficking, folding, assembly and phosphorylation. Sci Rep 5:14827. (doi: 10.1038/srep14827)

Download references

Acknowledgements

Original work in the authors’ laboratories is supported by NIH DK038452, BADERC DK057521-08 (Marshansky), Ministry of Education Tier 2 (MOE2011-T2-2-156; ARC 18/12), Singapore (GrĂ¼ber), and Japan Science and Technology Agency (Futai).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Marshansky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Marshansky, V., Futai, M., GrĂ¼ber, G. (2016). Eukaryotic V-ATPase and Its Super-complexes: From Structure and Function to Disease and Drug Targeting. In: Chakraborti, S., Dhalla, N. (eds) Regulation of Ca2+-ATPases,V-ATPases and F-ATPases. Advances in Biochemistry in Health and Disease, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-24780-9_16

Download citation

Publish with us

Policies and ethics