Skip to main content

Epigenetics of Breast Cancer: DNA Methylome and Global Histone Modifications

  • Chapter
  • First Online:
Epigenetic Advancements in Cancer

Abstract

Breast cancer, a heterogeneous disease comprised of tumors with different histological characteristics and clinical outcomes, is the leading cause of cancer deaths in women. Heterogeneous nature of the breast cancer demands delicate approaches to diagnose and follow the most appropriate strategy for clinical management. Based on microarray analysis of mRNA expression, four main molecular subtypes were identified: (a) luminal A, (b) luminal B, (c) basal-like, and (d) ERBB2(+). Even though molecular subtypes provided novel insights into our understanding of breast cancer heterogeneity, there is still room for improvement for better diagnostic, prognostic and therapeutic approaches. In this sense, epigenetics, specifically DNA methylation and histone modifications, have emerged as prominent candidates since several epigenetic factors were observed to be recurrently mutated in cancers including breast cancer. Recent advances in the field implicated that DNA methylation profiles and histone modifications are strongly associated with breast tumor subtypes and patient prognosis. Therefore, understanding contributions of epigenetics to breast cancer biology will lead to better diagnostic and prognostic strategies and will enable development of novel therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. GLOBOCAN 2012 v1.0, cancer incidence and mortality worldwide: IARC CancerBase No. 11. [Internet]. Lyon, France: International Agency for Research on Cancer; 2013. http://globocan.iarc.fr.

  2. Perou CM, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52.

    Article  CAS  PubMed  Google Scholar 

  3. Sorlie T, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A. 2001;98(19):10869–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sorlie T, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A. 2003;100(14):8418–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sotiriou C, Piccart MJ. Taking gene-expression profiling to the clinic: when will molecular signatures become relevant to patient care? Nat Rev Cancer. 2007;7(7):545–53.

    Article  CAS  PubMed  Google Scholar 

  6. Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150(1):12–27.

    Article  CAS  PubMed  Google Scholar 

  7. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.

    Article  CAS  Google Scholar 

  8. You JS, Jones PA. Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell. 2012;22(1):9–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stephens PJ, et al. The landscape of cancer genes and mutational processes in breast cancer. Nature. 2012;486(7403):400–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128(4):683–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Veeck J, Esteller M. Breast cancer epigenetics: from DNA methylation to microRNAs. J Mammary Gland Biol Neoplasia. 2010;15(1):5–17.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ongenaert M, et al. PubMeth: a cancer methylation database combining text-mining and expert annotation. Nucleic Acids Res. 2008;36(Database issue):D842–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Fang YC, et al. MeInfoText 2.0: gene methylation and cancer relation extraction from biomedical literature. BMC Bioinform. 2011;12:471.

    Article  Google Scholar 

  14. Jones A, et al. Emerging promise of epigenetics and DNA methylation for the diagnosis and management of women’s cancers. Epigenomics. 2010;2(1):9–38.

    Article  CAS  PubMed  Google Scholar 

  15. Barrow TM, Michels KB. Epigenetic epidemiology of cancer. Biochem Biophys Res Commun. 2014;455(1–2):70–83.

    Article  CAS  PubMed  Google Scholar 

  16. Yan PS, et al. CpG island arrays: an application toward deciphering epigenetic signatures of breast cancer. Clin Cancer Res. 2000;6(4):1432–8.

    CAS  PubMed  Google Scholar 

  17. Van der Auwera I, et al. Array-based DNA methylation profiling for breast cancer subtype discrimination. PLoS One. 2010;5(9), e12616.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Dedeurwaerder S, et al. DNA methylation profiling reveals a predominant immune component in breast cancers. EMBO Mol Med. 2011;3(12):726–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kamalakaran S, et al. DNA methylation patterns in luminal breast cancers differ from non-luminal subtypes and can identify relapse risk independent of other clinical variables. Mol Oncol. 2011;5(1):77–92.

    Article  CAS  PubMed  Google Scholar 

  20. Tavazoie SF, et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature. 2008;451(7175):147–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hansen KD, et al. Increased methylation variation in epigenetic domains across cancer types. Nat Genet. 2011;43(8):768–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Desmedt C, et al. Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes. Clin Cancer Res. 2008;14(16):5158–65.

    Article  CAS  PubMed  Google Scholar 

  23. Fang F, et al. Breast cancer methylomes establish an epigenomic foundation for metastasis. Sci Transl Med. 2011;3(75):75ra25.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sun Z, et al. Integrated analysis of gene expression, CpG island methylation, and gene copy number in breast cancer cells by deep sequencing. PLoS One. 2011;6(2), e17490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li L, et al. Estrogen and progesterone receptor status affect genome-wide DNA methylation profile in breast cancer. Hum Mol Genet. 2010;19(21):4273–7.

    Article  CAS  PubMed  Google Scholar 

  26. Christensen BC, et al. Breast cancer DNA methylation profiles are associated with tumor size and alcohol and folate intake. PLoS Genet. 2010;6(7), e1001043.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Bediaga NG, et al. DNA methylation epigenotypes in breast cancer molecular subtypes. Breast Cancer Res. 2010;12(5):R77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Holm K, et al. Molecular subtypes of breast cancer are associated with characteristic DNA methylation patterns. Breast Cancer Res. 2010;12(3):R36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Stefansson OA, et al. A DNA methylation-based definition of biologically distinct breast cancer subtypes. Mol Oncol. 2015;9(3):555–68.

    Article  CAS  PubMed  Google Scholar 

  30. Lee JS, et al. Basal-like breast cancer displays distinct patterns of promoter methylation. Cancer Biol Ther. 2010;9(12):1017–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Park SY, et al. Distinct patterns of promoter CpG island methylation of breast cancer subtypes are associated with stem cell phenotypes. Mod Pathol. 2012;25(2):185–96.

    CAS  PubMed  Google Scholar 

  32. Waddell N, et al. Subtypes of familial breast tumours revealed by expression and copy number profiling. Breast Cancer Res Treat. 2010;123(3):661–77.

    Article  PubMed  Google Scholar 

  33. Flanagan JM, et al. DNA methylome of familial breast cancer identifies distinct profiles defined by mutation status. Am J Hum Genet. 2010;86(3):420–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lim E, et al. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med. 2009;15(8):907–13.

    Article  CAS  PubMed  Google Scholar 

  35. Sproul D, et al. Transcriptionally repressed genes become aberrantly methylated and distinguish tumors of different lineages in breast cancer. Proc Natl Acad Sci U S A. 2011;108(11):4364–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Van’t Veer LJ, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature. 2002;415(6871):530–6.

    Article  Google Scholar 

  37. Ronneberg JA, et al. Methylation profiling with a panel of cancer related genes: association with estrogen receptor, TP53 mutation status and expression subtypes in sporadic breast cancer. Mol Oncol. 2011;5(1):61–76.

    Article  CAS  PubMed  Google Scholar 

  38. Salhia B, et al. Integrated genomic and epigenomic analysis of breast cancer brain metastasis. PLoS One. 2014;9(1), e85448.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Reyngold M, et al. Remodeling of the methylation landscape in breast cancer metastasis. PLoS One. 2014;9(8), e103896.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Andrews J, et al. Multi-platform whole-genome microarray analyses refine the epigenetic signature of breast cancer metastasis with gene expression and copy number. PLoS One. 2010;5(1), e8665.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Hon GC, et al. Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer. Genome Res. 2012;22(2):246–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Luger K, et al. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997;389(6648):251–60.

    Article  CAS  PubMed  Google Scholar 

  43. Richmond TJ, Davey CA. The structure of DNA in the nucleosome core. Nature. 2003;423(6936):145–50.

    Article  CAS  PubMed  Google Scholar 

  44. Tsompana M, Buck MJ. Chromatin accessibility: a window into the genome. Epigenetics Chromatin. 2014;7(1):33.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kingston RE, Bunker CA, Imbalzano AN. Repression and activation by multiprotein complexes that alter chromatin structure. Genes Dev. 1996;10(8):905–20.

    Article  CAS  PubMed  Google Scholar 

  46. Leszinski G, et al. Relevance of histone marks H3K9me3 and H4K20me3 in cancer. Anticancer Res. 2012;32(5):2199–205.

    CAS  PubMed  Google Scholar 

  47. Kouzarides T. Chromatin modifications and their function. Cell. 2007;128(4):693–705.

    Article  CAS  PubMed  Google Scholar 

  48. Tessarz P, Kouzarides T. Histone core modifications regulating nucleosome structure and dynamics. Nat Rev Mol Cell Biol. 2014;15(11):703–8.

    Article  CAS  PubMed  Google Scholar 

  49. Tan M, et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell. 2011;146(6):1016–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Turner BM. Histone acetylation and an epigenetic code. Bioessays. 2000;22(9):836–45.

    Article  CAS  PubMed  Google Scholar 

  51. Munshi A, et al. Histone modifications dictate specific biological readouts. J Genet Genomics. 2009;36(2):75–88.

    Article  CAS  PubMed  Google Scholar 

  52. Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403(6765):41–5.

    Article  CAS  PubMed  Google Scholar 

  53. Barth TK, Imhof A. Fast signals and slow marks: the dynamics of histone modifications. Trends Biochem Sci. 2010;35(11):618–26.

    Article  CAS  PubMed  Google Scholar 

  54. Khorasanizadeh S. The nucleosome: from genomic organization to genomic regulation. Cell. 2004;116(2):259–72.

    Article  CAS  PubMed  Google Scholar 

  55. Rodriguez-Paredes M, Esteller M. A combined epigenetic therapy equals the efficacy of conventional chemotherapy in refractory advanced non-small cell lung cancer. Cancer Discov. 2011;1(7):557–9.

    Article  CAS  PubMed  Google Scholar 

  56. Schotta G, et al. A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev. 2004;18(11):1251–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rice JC, et al. Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol Cell. 2003;12(6):1591–8.

    Article  CAS  PubMed  Google Scholar 

  58. Esteller M. Epigenetics in cancer. N Engl J Med. 2008;358(11):1148–59.

    Article  CAS  PubMed  Google Scholar 

  59. Basse C, Arock M. The increasing roles of epigenetics in breast cancer: Implications for pathogenicity, biomarkers, prevention and treatment. Int J Cancer. 2014. doi:10.1002/ijc.29347.

    PubMed  Google Scholar 

  60. Berdasco M, Esteller M. Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell. 2010;19(5):698–711.

    Article  CAS  PubMed  Google Scholar 

  61. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74.

    Article  CAS  PubMed  Google Scholar 

  62. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3(6):415–28.

    CAS  PubMed  Google Scholar 

  63. Jones PA, Laird PW. Cancer epigenetics comes of age. Nat Genet. 1999;21(2):163–7.

    Article  CAS  PubMed  Google Scholar 

  64. Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer. 2004;4(2):143–53.

    Article  CAS  PubMed  Google Scholar 

  65. Valk-Lingbeek ME, Bruggeman SW, van Lohuizen M. Stem cells and cancer; the polycomb connection. Cell. 2004;118(4):409–18.

    Article  CAS  PubMed  Google Scholar 

  66. Elsheikh SE, et al. Global histone modifications in breast cancer correlate with tumor phenotypes, prognostic factors, and patient outcome. Cancer Res. 2009;69(9):3802–9.

    Article  CAS  PubMed  Google Scholar 

  67. Wei Y, et al. Loss of trimethylation at lysine 27 of histone H3 is a predictor of poor outcome in breast, ovarian, and pancreatic cancers. Mol Carcinog. 2008;47(9):701–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Healey MA, et al. Association of H3K9me3 and H3K27me3 repressive histone marks with breast cancer subtypes in the Nurses’ Health Study. Breast Cancer Res Treat. 2014;147(3):639–51.

    Article  CAS  PubMed  Google Scholar 

  69. Fraga MF, et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet. 2005;37(4):391–400.

    Article  CAS  PubMed  Google Scholar 

  70. Seligson DB, et al. Global histone modification patterns predict risk of prostate cancer recurrence. Nature. 2005;435(7046):1262–6.

    Article  CAS  PubMed  Google Scholar 

  71. Park YS, et al. The global histone modification pattern correlates with cancer recurrence and overall survival in gastric adenocarcinoma. Ann Surg Oncol. 2008;15(7):1968–76.

    Article  PubMed  Google Scholar 

  72. Suzuki J, et al. Protein acetylation and histone deacetylase expression associated with malignant breast cancer progression. Clin Cancer Res. 2009;15(9):3163–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Cao R, et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science. 2002;298(5595):1039–43.

    Article  CAS  PubMed  Google Scholar 

  74. Muller J, et al. Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell. 2002;111(2):197–208.

    Article  CAS  PubMed  Google Scholar 

  75. Holm K, et al. Global H3K27 trimethylation and EZH2 abundance in breast tumor subtypes. Mol Oncol. 2012;6(5):494–506.

    Article  CAS  PubMed  Google Scholar 

  76. Leroy G, et al. A quantitative atlas of histone modification signatures from human cancer cells. Epigenetics Chromatin. 2013;6(1):20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bachmann IM, et al. EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J Clin Oncol. 2006;24(2):268–73.

    Article  CAS  PubMed  Google Scholar 

  78. Collett K, et al. Expression of enhancer of zeste homologue 2 is significantly associated with increased tumor cell proliferation and is a marker of aggressive breast cancer. Clin Cancer Res. 2006;12(4):1168–74.

    Article  CAS  PubMed  Google Scholar 

  79. Pietersen AM, et al. EZH2 and BMI1 inversely correlate with prognosis and TP53 mutation in breast cancer. Breast Cancer Res. 2008;10(6):R109.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Yokoyama Y, et al. Loss of histone H4K20 trimethylation predicts poor prognosis in breast cancer and is associated with invasive activity. Breast Cancer Res. 2014;16(3):R66.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Santos Jr GC, et al. Epigenetic modifications, chromatin distribution and TP53 transcription in a model of breast cancer progression. J Cell Biochem. 2015;116(4):533–41.

    Article  CAS  PubMed  Google Scholar 

  82. Seligson DB, et al. Global levels of histone modifications predict prognosis in different cancers. Am J Pathol. 2009;174(5):1619–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Aihara H, et al. Nucleosomal histone kinase-1 phosphorylates H2A Thr 119 during mitosis in the early Drosophila embryo. Genes Dev. 2004;18(8):877–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Harvey AC, Jackson SP, Downs JA. Saccharomyces cerevisiae histone H2A Ser122 facilitates DNA repair. Genetics. 2005;170(2):543–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Shroff R, et al. Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break. Curr Biol. 2004;14(19):1703–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Maile T, et al. TAF1 activates transcription by phosphorylation of serine 33 in histone H2B. Science. 2004;304(5673):1010–4.

    Article  CAS  PubMed  Google Scholar 

  87. Skaland I, et al. The prognostic value of the proliferation marker phosphohistone H3 (PPH3) in luminal, basal-like and triple negative phenotype invasive lymph node-negative breast cancer. Cell Oncol. 2009;31(4):261–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Skaland I, et al. Phosphohistone H3 expression has much stronger prognostic value than classical prognosticators in invasive lymph node-negative breast cancer patients less than 55 years of age. Mod Pathol. 2007;20(12):1307–15.

    Article  CAS  PubMed  Google Scholar 

  89. Skaland I, et al. Validating the prognostic value of proliferation measured by Phosphohistone H3 (PPH3) in invasive lymph node-negative breast cancer patients less than 71 years of age. Breast Cancer Res Treat. 2009;114(1):39–45.

    Article  CAS  PubMed  Google Scholar 

  90. Klintman M, et al. The prognostic value of mitotic activity index (MAI), phosphohistone H3 (PPH3), cyclin B1, cyclin A, and Ki67, alone and in combinations, in node-negative premenopausal breast cancer. PLoS One. 2013;8(12), e81902.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Harshman SW, et al. Histone H1 phosphorylation in breast cancer. J Proteome Res. 2014;13(5):2453–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Jason LJ, et al. Histone ubiquitination: a tagging tail unfolds? Bioessays. 2002;24(2):166–74.

    Article  CAS  PubMed  Google Scholar 

  93. Prenzel T, et al. Estrogen-dependent gene transcription in human breast cancer cells relies upon proteasome-dependent monoubiquitination of histone H2B. Cancer Res. 2011;71(17):5739–53.

    Article  CAS  PubMed  Google Scholar 

  94. Guertin MJ, et al. Targeted H3R26 deimination specifically facilitates estrogen receptor binding by modifying nucleosome structure. PLoS Genet. 2014;10(9), e1004613.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Wilkinson KD. Ubiquitination and deubiquitination: targeting of proteins for degradation by the proteasome. Semin Cell Dev Biol. 2000;11(3):141–8.

    Article  CAS  PubMed  Google Scholar 

  96. Cao J, Yan Q. Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer. Front Oncol. 2012;2:26.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Zhang Y. Transcriptional regulation by histone ubiquitination and deubiquitination. Genes Dev. 2003;17(22):2733–40.

    Article  CAS  PubMed  Google Scholar 

  98. Cole AJ, Clifton-Bligh R, Marsh DJ. Histone H2B monoubiquitination: roles to play in human malignancy. Endocr Relat Cancer. 2015;22(1):T19–33.

    Article  CAS  PubMed  Google Scholar 

  99. Zhang Y. Molecular biology: no exception to reversibility. Nature. 2004;431(7009):637–9.

    Article  CAS  PubMed  Google Scholar 

  100. Strahl BD, et al. Methylation of histone H4 at arginine 3 occurs in vivo and is mediated by the nuclear receptor coactivator PRMT1. Curr Biol. 2001;11(12):996–1000.

    Article  CAS  PubMed  Google Scholar 

  101. Bauer UM, et al. Methylation at arginine 17 of histone H3 is linked to gene activation. EMBO Rep. 2002;3(1):39–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Pal S, et al. Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes. Mol Cell Biol. 2004;24(21):9630–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chang X, Han J. Expression of peptidylarginine deiminase type 4 (PAD4) in various tumors. Mol Carcinog. 2006;45(3):183–96.

    Article  CAS  PubMed  Google Scholar 

  104. Chang X, et al. Increased PADI4 expression in blood and tissues of patients with malignant tumors. BMC Cancer. 2009;9:40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Krzeslak A, et al. Gene expression of O-GlcNAc cycling enzymes in human breast cancers. Clin Exp Med. 2012;12(1):61–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bogachek MV, et al. Sumoylation pathway is required to maintain the basal breast cancer subtype. Cancer Cell. 2014;25(6):748–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozden Yalcin-Ozuysal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mese, G., Yalcin-Ozuysal, O. (2016). Epigenetics of Breast Cancer: DNA Methylome and Global Histone Modifications. In: Mishra, M., Bishnupuri, K. (eds) Epigenetic Advancements in Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-24951-3_9

Download citation

Publish with us

Policies and ethics