Skip to main content

Part of the book series: Computational Biology ((COBO,volume 23))

  • 1835 Accesses

Abstract

Network motifs are recurring subgraph patterns in biological or other networks. A network motif is assumed to have a specific function associated with it, and these structures are considered as the building blocks of biological networks. Discovery of such motifs is important as it gives insight to the functioning of a network and also provides an alternative means to compare and analyze two or more biological networks. If two networks have common motifs, we can assume they perform some similar basic functions. Finding similarity also helps to find phylogenetic relationships between organisms. Detecting network motifs of a given size is a computationally hard task as the number of possible subgraphs grows exponentially with the size, and also this problem is closely related to the graph isomorphism problem which is not tractable either in the general case or as the subgraph isomorphism problem. Motif discovery involves three subtasks: finding subgraphs of a given size, dividing these into equal isomorphic classes and evaluating the statistical significance of the discovered subgraphs. The last step is usually implemented by generating many random graphs similar to the original one and comparing the frequencies of the subgraphs in the original graph and in these graphs. In this chapter, we describe motif discovery problem, show several sequential, and few distributed existing algorithms. We also provide a general framework for distributed processing of the subtasks involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albert I, Albert R (2004) Conserved network motifs allow protein-protein interaction prediction. Bioinformatics 20(18):3346–3352

    Article  Google Scholar 

  2. Artzy-Randrup Y, Fleishman SJ, Ben-Tal N, Stone L (2004) Comment on network motifs: simple building blocks of complex networks and superfamilies of designed and evolved networks. Science 305(5687):1007

    Google Scholar 

  3. Battiti R, Mascia F (2007) An algorithm portfolio for the subgraph isomorphism problem. In: Engineering stochastic local search algorithms. Designing, Implementing and analyzing effective heuristics, Springer, Berlin Heidelberg, pp 106–120

    Google Scholar 

  4. Chen J, Hsu M, Lee L, Ng SK (2006) NeMofinder: genome-wide protein-protein interactions with meso-scale network motifs. In: Proceedings of 12th ACM SIGKDD international conference knowledge discovery and data mining (KDD’06), pp 106–115

    Google Scholar 

  5. Costanzo MC, Crawford ME, Hirschman JE, Kranz JE, Olsen P, Robertson LS, Skrzypek MS, Braun BR, Hopkins KL, Kondu P, Lengieza C, Lew-Smith JE, Tillberg M, Garrels JI (2001) Ypd(tm), pombepd(tm), and wormpd(tm): model organism volumes of the bioknowledge(tm) library, an integrated resource for protein information. Nucleic Acids Res 29:75–79

    Article  Google Scholar 

  6. Erciyes K (2014) Complex networks: an algorithmic perspective. CRC Press, Taylor and Francis, pp 172. ISBN 978-1-4471-5172-2

    Google Scholar 

  7. Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. W. H. Freeman

    Google Scholar 

  8. Grochow J, Kellis M (2007) Network motif discovery using subgraph enumeration and symmetry-breaking. In: Proceedings of 11th annual international conference research in computational molecular biology (RECOMB’07), pp 92–106

    Google Scholar 

  9. Han J-DJ, N. Bertin N, Hao T, Goldberg DS, Berriz GF, Zhang LV, Dupuy D, Walhout AJM, Cusick ME, Roth FP, Vidal M, (2004) Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature 430(6995):88–93

    Google Scholar 

  10. Kashani ZR, Ahrabian H, Elahi E, Nowzari-Dalini A, Ansari ES, Asadi S, Mohammadi S, Schreiber F, Masoudi-Nejad A (2009) Kavosh: a new algorithm for finding network motifs. BMC Bioinform 10(318)

    Google Scholar 

  11. Kashtan N, Itzkovitz S, Milo R, Alon U (2002) Mfinder tool guide. Technical report, Department of Molecular Cell Biology and Computer Science and Applied Mathematics, Weizman Institute of Science

    Google Scholar 

  12. Kashtan N, Itzkovitz S, Milo R, Alon U (2004) Efficient sampling algorithm for estimating sub-graph concentrations and detecting network motifs. Bioinformatics 20:1746–1758

    Article  Google Scholar 

  13. Kreher D, Stinson D (1998) Combinatorial algorithms: generation, enumeration and search. CRC Press

    Google Scholar 

  14. Lee TI et al (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298(5594):799–804

    Article  Google Scholar 

  15. McKay BD (1981) Practical graph isomorphism. In: 10th Manitoba conference on numerical mathematics and computing, Congressus Numerantium, vol 30, pp 45–87

    Google Scholar 

  16. McKay BD (1998) Isomorph-free exhaustive generation. J Algorithms 26:306–324

    Article  MathSciNet  MATH  Google Scholar 

  17. Mfinder. http://www.weizmann.ac.il/mcb/UriAlon/index.html

  18. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U (2002) Network motifs: simple building blocks of complex networks. Science 298(5594):824–827

    Article  Google Scholar 

  19. Milo R, Kashtan N, Levitt R, Alon U (2004) Response to comment on network motifs: simple building blocks of complex networks and superfamilies of designed and evolved networks. Science 305(5687):1007

    Google Scholar 

  20. Nauty User’s Guide, Computer Science Dept. Australian National University

    Google Scholar 

  21. Omidi S, Schreiber F, Masoudi-Nejad A (2009) MODA: an efficient algorithm for network motif discovery in biological networks. Genes Genet Syst 84:385–395

    Article  Google Scholar 

  22. Ribeiro P, Silva F, Lopes L (2012) Parallel discovery of network motifs. J Parallel Distrib Comput 72(2):144–154

    Article  Google Scholar 

  23. Ribeiro P, Efficient and scalable algorithms for network motifs discovery. Ph.D. Thesis Doctoral Programme in Computer Science. Faculty of Science of the University of Porto

    Google Scholar 

  24. Ribeiro P, Silva F (2010) Efficient subgraph frequency estimation with g-tries. Algorithms Bioinform 238–249

    Google Scholar 

  25. Ribeiro P, Silva F (2010) G-tries: an efficient data structure for discovering network motifs. In: Proceedings of 2010 ACM symposium on applied computing, pp 1559–1566

    Google Scholar 

  26. Ribeiro P, Silva F, Lopes L (2010) A parallel algorithm for counting subgraphs in complex networks. In: 3rd international conference on biomedical engineering systems and technologies, Springer, pp 380–393

    Google Scholar 

  27. Schatz M, Cooper-Balis E, Bazinet A (2008) Parallel network motif finding. Techinical report, University of Maryland Insitute for Advanced Computer Studies,

    Google Scholar 

  28. Schreiber F, Schwbbermeyer H (2005) Frequency concepts and pattern detection for the analysis of motifs in networks. In: Transactions on Computational Systems Biology LNBI 3737, Springer, Berlin Heidelberg, pp 89–104

    Google Scholar 

  29. Schreiber F, Schwbbermeyer H (2005) MAVisto: a tool for the exploration of network motifs. Bioinformatics 21:3572–3574

    Article  Google Scholar 

  30. Shen-Orr SS, Milo R, Mangan S, Alon U (2020) Network motifs in the transcriptional regulation network of Escherichia Coli. Nat Gen 31(1):64–68

    Google Scholar 

  31. Ullmann JR (1976) An algorithm for subgraph isomorphism. J ACM 23(1):31–42

    Article  MathSciNet  Google Scholar 

  32. Wang T, Touchman JW, Zhang W, Suh EB, Xue G (2005) A parallel algorithm for extracting transcription regulatory network motifs. In Proceedings of the IEEE international symposium on bioinformatics and bioengineering, IEEE Computer Society Press, Los Alamitos, CA, USA, pp 193–200

    Google Scholar 

  33. Wernicke S (2005) A faster algorithm for detecting network motifs. In: Proceedings of 5th WABI-05, vol 3692, Springer, pp 165–177

    Google Scholar 

  34. Wernicke S (2006) Efficient detection of network motifs. IEEE/ACM Trans Comput Biol Bioinform 3(4):347–359

    Article  Google Scholar 

  35. Wernicke S, Rasche F (2006) FANMOD: a tool for fast network motif detection. Bioinformatics 22(9):1152–1153

    Article  Google Scholar 

  36. Williams RJ, Martinez ND (2000) Simple rules yield complex food webs. Nature 404:180–183

    Article  Google Scholar 

  37. Wong E, Baur B, Quader S, Huang C-H (2011) Biological network motif detection: principles and practice. Brief Bioinform. doi:10.1093/bib/bbr033

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Erciyes .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Erciyes, K. (2015). Network Motif Search. In: Distributed and Sequential Algorithms for Bioinformatics. Computational Biology, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-24966-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24966-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24964-3

  • Online ISBN: 978-3-319-24966-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics