Skip to main content

Statistical Inference for Coherent Fluids

  • Conference paper
  • First Online:
Dynamic Data-Driven Environmental Systems Science (DyDESS 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8964))

Abstract

A non-parametric perceptual organization for coherent fluids is proposed, motivated by the observation that ignoring coherence can be disastrous for inference. Detecting coherence features and establishing correspondence can be challenging for sparse measurements and complex structures in fluid fields. Therefore, a non-parametric representation using deformation (geometry) and amplitude (appearance) is developed. It is first applied to Data Assimilation and Ensemble analysis problems for coherent fluids, following which new methods for Principal Modes, Random Fields, Variational Blending and Reduced Order Modeling are introduced. Simple examples illustrating application suggest broad utility in environmental inference, verification, representation and modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Gridded spatial fields are interchanged as vectors by rasterizing.

References

  1. Amit, Y., Grenander, U., Piccioni, M.: Structural image restoration through deformable templates. J. Am. Stat. Assoc. 86(414), 376–387 (1991)

    Article  Google Scholar 

  2. Beezily, J.D., Mandel, J.: Morphing ensemble Kalman filters. Tellus A 60, 130–140 (2008)

    Google Scholar 

  3. Charpiat, G., Faugeras, O., Keriven, R.: Image statistics based on diffeomorphic matching. In: ICCV, pp. 852–857 (2005)

    Google Scholar 

  4. Christensen, G.E., Rabbitt, R.D., Miller, M.I.: Deformable templates using large deformation kinematics. IEEE Trans. Image Process. 5(10), 1435–1447 (1996)

    Article  Google Scholar 

  5. Hoffman, R.N., Liu, Z., Louis, J., Grassotti, C.: Distortion representation of forecast errors. Mon. Weather Rev. 123, 2758–2770 (1995)

    Article  Google Scholar 

  6. Jankov, I., Gregory, S., Ravela, S. Toth, Z.: A field alignment technique for forecast errors estimation and decomposition (2014, submitted)

    Google Scholar 

  7. Ravela, S.: Two new directions in data assimilation by field alignment. Lect. Notes Comput. Sci. 4487, 1147–1154 (2007)

    Article  Google Scholar 

  8. Ravela, S.: Quantifying uncertainty for coherent structures. Procedia Comput. Sci. 9, 1187–1196 (2012)

    Article  Google Scholar 

  9. Ravela, S., Chatdarong, V.: How do we deal with position errors in observations and forecasts annual? Geophys. Res. Abs. (EGU), 8(09557) (2006)

    Google Scholar 

  10. Ravela, S., Dupree, W.J., Langlois, T.R., Wolfson, M.M., Yang, C.M.: Method and apparatus for generating a forecast weather image. US Patent 8,625,840, Janary 2014

    Google Scholar 

  11. Ravela, S., Emanuel, K., McLaughlin, D.: Data assimilation by field alignment. Phys. D 230, 127–145 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ravela, S., Sleder, I., Salas, J.: Mapping coherent atmospheric structures with small unmanned aircraft systems. In: AIAA Infotech@Aerospace (I@A) Conference, pp. 1–11 (2013)

    Google Scholar 

  13. Ravela, S.: Amplitude-position formulation of data assimilation. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3993, pp. 497–505. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Ravela, S.,Yang, C., William, J., Emanuel, K.: An objective framework for assimilating coherent structures. In: WMO Symposium on Nowcasting (2009)

    Google Scholar 

  15. Ravela, S.: Spatial inference for coherent geophysical fluids by appearance and geometry. In: Winter Conference on Applications of Computer Vision, pp. 925–932 (2014)

    Google Scholar 

  16. Tagade, P., Seybold, H., Ravela, S.: Mixture ensembles for data assimilation in dynamic data-driven environmental systems. Procedia Comput. Sci. 29, 1266–1276 (2014)

    Article  Google Scholar 

  17. Williams, J.K.: WRF-Var implementation for data assimilation experimentation at MIT. Master’s thesis, Massachusetts Institute of Technology (2008)

    Google Scholar 

  18. Yang, C., Ravela, S.: Deformation invariant image matching by spectrally controlled diffeomorphic alignment. In: Proceedings of International Conference on Computer Vision, vol. 1, pp. 1303–1310 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sai Ravela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ravela, S. (2015). Statistical Inference for Coherent Fluids. In: Ravela, S., Sandu, A. (eds) Dynamic Data-Driven Environmental Systems Science. DyDESS 2014. Lecture Notes in Computer Science(), vol 8964. Springer, Cham. https://doi.org/10.1007/978-3-319-25138-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25138-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25137-0

  • Online ISBN: 978-3-319-25138-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics