Skip to main content

Signature-Free Asynchronous Byzantine Systems: From Multivalued to Binary Consensus with t < n/3, O(n 2) Messages, and Constant Time

  • Conference paper
  • First Online:
Structural Information and Communication Complexity (SIROCCO 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9439))

Abstract

This paper presents a new algorithm that reduces multivalued consensus to binary consensus in an asynchronous message-passing system made up of n processes where up to t may commit Byzantine failures. This algorithm has the following noteworthy properties: it assumes t < n/3 (and is consequently optimal from a resilience point of view), uses O(n 2) messages, has a constant time complexity, and does not use signatures. The design of this reduction algorithm relies on two new all-to-all communication abstractions. The first one allows the non-faulty processes to reduce the number of proposed values to c, where c is a small constant. The second communication abstraction allows each non-faulty process to compute a set of (proposed) values such that, if the set of a non-faulty process contains a single value, then this value belongs to the set of any non-faulty process. Both communication abstractions have an O(n 2) message complexity and a constant time complexity. The reduction of multivalued Byzantine consensus to binary Byzantine consensus is then a simple sequential use of these communication abstractions. To the best of our knowledge, this is the first asynchronous message-passing algorithm that reduces multivalued consensus to binary consensus with O(n 2) messages and constant time complexity (measured with the longest causal chain of messages) in the presence of up to t < n/3 Byzantine processes, and without using cryptography techniques. Moreover, this reduction algorithm uses a single instance of the underlying binary consensus, and tolerates message re-ordering by Byzantine processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguilera, M.K., Frolund, S., Hadzilacos, V., Horn, S., Toueg, S.: Abortable and query-abortable objects and their efficient implementation. In: Proc. 26th Annual ACM Symposium on Principles of Distributed Computing (PODC 2007), pp. 23–32 (2007)

    Google Scholar 

  2. Attiya, H., Welch, J.: Distributed computing: fundamentals, simulations and advanced topics, 2nd edn., p. 414 pages. Wiley Interscience (2004)

    Google Scholar 

  3. Ben-Or, M.: Another advantage of free choice: completely asynchronous agreement protocols. In: Proc. 2nd ACM Symposium on Principles of Distributed Computing (PODC 1983), pp. 27–30. ACM Press (1983)

    Google Scholar 

  4. Bracha, G.: Asynchronous Byzantine agreement protocols. Information & Computation 75(2), 130–143 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bracha, G., Toueg, S.: Asynchronous consensus and broadcast protocols. Journal of the ACM 32(4), 824–840 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cachin, C., Kursawe, K., Petzold, F., Shoup, V.: Secure and efficient asynchronous broadcast protocols. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 524–541. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Correia, M., Ferreira Neves, N., Verissimo, P.: From consensus to atomic broadcast: time-free Byzantine-resistant protocols without signatures. Computer Journal 49(1), 82–96 (2006)

    Article  Google Scholar 

  8. De Prisco, R., Malkhi, D., Reiter, M.: On k-set consensus problems in asynchronous systems. Transactions on Parallel and Distributed Systems 12(1), 7–21 (2001)

    Article  MATH  Google Scholar 

  9. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial synchrony. Journal of the ACM 35(2), 288–323 (1988)

    Article  MathSciNet  Google Scholar 

  10. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. Journal of the ACM 32(2), 374–382 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Friedman, R., Mostéfaoui, A., Rajsbaum, S., Raynal, M.: Distributed agreement problems and their connection with error-correcting codes. IEEE Transactions on Computers 56(7), 865–875 (2007)

    Article  MathSciNet  Google Scholar 

  12. Friedman, R., Mostéfaoui, A., Raynal, M.: \(\Diamond{\cal P}_{mute}\)-based consensus for asynchronous Byzantine systems. Parallel Processing Letters 15(1-2), 162–182 (2005)

    MathSciNet  Google Scholar 

  13. Friedman, R., Mostéfaoui, A., Raynal, M.: Simple and efficient oracle-based consensus protocols for asynchronous Byzantine systems. IEEE Transactions on Dependable and Secure Computing 2(1), 46–56 (2005)

    Article  Google Scholar 

  14. Hadzilacos, V., Toueg, S.: On deterministic abortable objects. In: Proc. 32th Annual ACM Symposium on Principles of Distributed Computing (PODC 2013), pp. 4–12 (2013)

    Google Scholar 

  15. Kihlstrom, K.P., Moser, L.E., Melliar-Smith, P.M.: Byzantine fault detectors for solving consensus. The Computer Journal 46(1), 16–35 (2003)

    Article  MATH  Google Scholar 

  16. King, V., Saia, J.: Breaking the O(n 2) bit barrier: scalable Byzantine agreement with an adaptive adversary. In: Proc. 30th ACM Symposium on Principles of Distributed Computing (PODC 2011), pp. 420–429. ACM Press (2011)

    Google Scholar 

  17. Lamport, L., Shostack, R., Pease, M.: The Byzantine generals problem. ACM Transactions on Programming Languages and Systems 4(3), 382–401 (1982)

    Article  MATH  Google Scholar 

  18. Liang, G., Vaidya, N.: Error-free multi-valued consensus with Byzantine failures. In: Proc. 30th ACM Symposium on Principles of Distributed Computing (PODC 2011), pp. 11–20. ACM Press (2011)

    Google Scholar 

  19. Lynch, N.A.: Distributed algorithms, 872 pages. Morgan Kaufmann Pub., San Francisco (1996)

    Google Scholar 

  20. Martin, J.-P., Alvisi, L.: Fast Byzantine consensus. IEEE Transactions on Dependable and Secure Computing 3(3), 202–215 (2006)

    Article  Google Scholar 

  21. Milosevic, Z., Hutle, M., Schiper, A.: On the reduction of atomic broadcast to consensus with Byzantine faults. In: Proc. 30th IEEE Int’l Symposium on Reliable Distributed Systems (SRDS 2011), pp. 235–244. IEEE Computer Press (2011)

    Google Scholar 

  22. Mostéfaoui, A., Moumen, H., Raynal, M.: Signature-free asynchronous Byzantine consensus with t < n/3 and O(n 2) messages. In: Proc. 33rd Annual ACM Symposium on Principles of Distributed Computing (PODC 2014), pp. 2–9. ACM Press (2014)

    Google Scholar 

  23. Mostéfaoui, A., Rajsbaum, S., Raynal, M.: Conditions on input vectors for consensus solvability in asynchronous distributed systems. Journal of the ACM 50(6), 922–954 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mostéfaoui, A., Raynal, M.: Signature-free broadcast-based intrusion tolerance: never decide a Byzantine value. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 143–158. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  25. Mostéfaoui, A., Raynal, M.: Asynchronous Byzantine systems: from multivalued to binary consensus with t < n/3, O(n 2) messages, O(1) time, and no signature. Tech Report 2014, 17 pages, IRISA, Université de Rennes (F) (2015), https://hal.inria.fr/hal-01102496

  26. Mostéfaoui, A., Raynal, M., Tronel, F.: From binary consensus to multivalued consensus in asynchronous message-passing systems. Information Processing Letters 73, 207–213 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Patra, A.: Error-free multi-valued broadcast and Byzantine agreement with optimal communication complexity. In: Fernàndez Anta, A., Lipari, G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 34–49. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  28. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults. Journal of the ACM 27, 228–234 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rabin, M.: Randomized Byzantine generals. In: Proc. 24th IEEE Symposium on Foundations of Computer Science (FOCS 1983), pp. 116–124. IEEE Computer Society Press (1983)

    Google Scholar 

  30. Raynal, M.: Communication and agreement abstractions for fault-tolerant asynchronous distributed systems. Morgan & Claypool, 251 pages (2010) ISBN 978-1-60845-293-4

    Google Scholar 

  31. Raynal, M.: Fault-tolerant agreement in synchronous message-passing systems, 165 pages. Morgan & Claypool Publishers (2010) ISBN 978-1-60845-525-6

    Google Scholar 

  32. Raynal, M.: Concurrent programming: algorithms, principles and foundations, 515 pages. Springer (2013)

    Google Scholar 

  33. Toueg, S.: Randomized Byzantine agreement. In: Proc. 3rd Annual ACM Symposium on Principles of Distributed Computing (PODC 1984), pp. 163–178. ACM Press (1984)

    Google Scholar 

  34. Turpin, R., Coan, B.A.: Extending binary Byzantine agreement to multivalued Byzantine agreement. Information Processing Letters 18, 73–76 (1984)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mostéfaoui, A., Raynal, M. (2015). Signature-Free Asynchronous Byzantine Systems: From Multivalued to Binary Consensus with t < n/3, O(n 2) Messages, and Constant Time. In: Scheideler, C. (eds) Structural Information and Communication Complexity. SIROCCO 2015. Lecture Notes in Computer Science(), vol 9439. Springer, Cham. https://doi.org/10.1007/978-3-319-25258-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25258-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25257-5

  • Online ISBN: 978-3-319-25258-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics