Skip to main content

Metabolic Bone Disorders in the Elderly

  • Chapter
  • First Online:
Diseases in the Elderly

Abstract

Bone changes occur with normal ageing. Structural changes play a significant role in the age-related alterations of bone strength and quality. In ageing osteoclastic activity is greater than osteoblastic activity and results in net bone loss. With ageing there is decrease in bone mass and strength, and there is potential interrelationship between muscle quality and skeletal health. Osteoporosis is characterised by low bone mass and architectural deterioration of bone tissue leading to enhanced fragility and increase in fracture risk. Osteomalacia is a bone disorder characterised by failure in mineralisation of a newly formed organic matrix. In Paget’s disease there is increased resorption of the bone followed by intense osteoblastic response to repair resulting in disordered bone formation. Associated disorders such as fractures of the hip and vertebral and sacral insufficiency fractures are included in the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Bone, Bone Formation and Changes with Ageing

  1. Clarke B. Normal bone anatomy and physiology. CJASN. 2008;3 Suppl 3:S131–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Eriksen EF, Axelrod DN, Melsen F. Bone histomorphometry. New York: Raven Press; 1994. p. 11–125.

    Google Scholar 

  3. Logan JG, Basett D, Cheung MS. Paediatric bone pathology and monitiring the safety and efficacy of bone drugs in children. Bone drugs paediatrics: efficacy and challenges. Klein GL, editor. US: Springer; 2014. IBSM 9978-1-4899-7435-8.

    Google Scholar 

  4. Munday GR. Bone remodelling and its disorders. London: Martin Dunitz; 1995.

    Google Scholar 

  5. Raisz LG. Physiology and pathophysiology of bone remodeling. Clin Chem. 1999;45(8):1353–8.

    CAS  PubMed  Google Scholar 

  6. International Osteoporosis Foundation. Pathophysiology: biological causes of osteoporosis. http://www.iofbonehealth.org/pathpphysiology-biological-causes-osteoporosis. Accessed 13 Aug 2013.

  7. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A. 1996;95:3597–602.

    Article  Google Scholar 

  8. Suda Y, Takahashi N, Udagawa N, Jimi E, Gillepsi MT, Martin TJ, et al. Modulation of osteoclast differentiation and function by the new members of the tumour necrosis factor receptor and ligand families. Endocr Rev. 1999;20:345–57.

    Article  CAS  PubMed  Google Scholar 

  9. Bilzerkian JP, Raisz LG, Rodon GA. In: Bilezikian JP, Raisz LG, Rodan GA, editors. Principles of bone biology. San Diego: Academic; 2002. p. 979–94.

    Google Scholar 

  10. Boyl WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423:337–42.

    Article  Google Scholar 

  11. Blair HC, Athanason NA. Recent advances in osteoclast biology and pathological bone resorption. Histol Histopathol. 2004;19:189–99.

    CAS  PubMed  Google Scholar 

  12. Orwell ES. Toward an expanded understanding of the role of the periosteum in skeletal health. J Bone Miner Res. 2003;18:949–54.

    Article  Google Scholar 

  13. Pacifici R. Cytokines, oestrogen and postmenopausal osteoporosis-the second decade. Endocrinology. 1998;139:2659–61.

    CAS  PubMed  Google Scholar 

  14. Hellman P, Curling T, Rask L, Akerstrom G. Pathophysiology of primary hyperparathyroidism. Histol Histopathol. 2000;15(2):619–22.

    CAS  PubMed  Google Scholar 

  15. Li YC, Amling M, Pirro AE, Priemel M, Mense J, Baron R, et al. Normalization of mineral ion homeostasis by dietary means prevents hyperparathyroidism, rickets and osteomalacia, but not alopecia in vitamin receptor-ablated mice. Endocrinology. 1998;139:4391–6.

    CAS  PubMed  Google Scholar 

  16. Pilbeam CC, Harrison JR, Raisz LG. Prostaglandins and bone metabolism. In: Bilezikian JP, Raisz LG, Rodan GA, editors. Principles of biology. San Diego: Academic; 2002. p. 979–94.

    Google Scholar 

  17. Exton-Smith AN, Millard PH, Payne PR, Wheeler EF. Pattern of development and loss of bone with age. Lancet. 1969;2:1154–7.

    Article  CAS  PubMed  Google Scholar 

  18. Diaz MN, O’Neill TW, Silman T. The influence of family history of hip fracture on the risk of vertebral deformities in men and women: the European Vertebral Osteoporosis Study. Bone. 1997;20:147–9.

    Article  Google Scholar 

  19. Johnston Jr CC, Slemenda CW. Pathogenesis of osteoporosis. Bone. 1995;17:195–225.

    Article  Google Scholar 

  20. Handy RC, Anderson JS, Whalen KE, Harvill LM. Regional differences in bone density of young men involved in different exercises. Med Sci Sports Exerc. 1994;26:884–8.

    Google Scholar 

  21. Anderson FH. Osteoporosis in men. Int J Clin Pract. 1998;52:176–80.

    CAS  PubMed  Google Scholar 

  22. Stepan T, Tesarva A, Havranek KT, Jodl J, Normankora J, Pacovsky V. Age and sex dependency of the biochemical indices of bone remodelling. Clin Chun Acta. 1985;151:273–83.

    Article  CAS  Google Scholar 

  23. Nilas L, Christiansen C. Rates of bone loss in normal women. Evidence of accelerated trabecular loss after menopause. Eur J Clin Invest. 1988;18:529–34.

    Article  CAS  PubMed  Google Scholar 

  24. Mazess RB, Barden HS, Ettinger M, Johnston C, Dawson-Hughes B, Baran D, et al. Spine and femur density using dual photon absorptiometry in US white women. Bone Miner. 1987;2:211–9.

    CAS  PubMed  Google Scholar 

  25. Kiebzak GM. Age-related bone changes. Experimental Gerontol. 1991;26(2):171–87 (abstract).

    Article  CAS  Google Scholar 

  26. Zioupos P. Ageing human bone: factors affecting its biomechanical properties and the role of collagen. J Biomater Appl. 2001;15(1):187–229 (abstract).

    Article  CAS  PubMed  Google Scholar 

  27. Parfitt AM. Age-related structural changes in trabecular and cortical bone: cellular mechanisms and biomechanical consequences. Calcified Tissue Internat. 2006;36:S123–8 (abstract).

    Article  Google Scholar 

  28. Carter DR, Hayes WC. Bone compressive strength: the influence of density and strain rate. Science. 1976;194:1174–6.

    Article  CAS  PubMed  Google Scholar 

  29. Gibson LJ. The mechanical behaviour of cancellous bone. J Biomech. 1985;18:317–28.

    Article  CAS  PubMed  Google Scholar 

  30. Linde F, Norgaard P, Hvid L, Odgaart A, Soballe K. Mechanical properties of trabecular bone, dependency on strain rate. J Biomech. 1991;24:803–9.

    Article  CAS  PubMed  Google Scholar 

  31. Seeman E. From density to structure: growing us and growing old on the surface of the bone. J Bone Min Res. 1997;12:1–12.

    Article  Google Scholar 

  32. Dutta C. Significance of sarcopenia in the elderly. J Nutr. 1997;127:992S–3.

    CAS  PubMed  Google Scholar 

  33. Pocock NA, Eisaman JA, Hopper JL, Yeates MG, Sambrook PN, Ebert S, et al. Genetic determinants of bone mass in adults: a twin study. J Clin Invest. 1987;80:706–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Bailey AJ, Sims TJ, Ebbesen JP, Mansell JP, Thomsen JS, Mosekilde L, et al. Age-related changes in the biochemical properties of human cancellous bone collagen: relationship to bone strength. Calcif Tissue Int. 1999;65:203–10.

    Article  CAS  PubMed  Google Scholar 

Osteoporosis

  1. Anon. Consensus development conference: diagnosis prophylaxis and treatment of osteoporosis. Sam J Med. 1993;94:646–50.

    Google Scholar 

  2. World Health Organisation. 5. Population nutrient intake goals for preventing diet-related chronic disease. http://www.who.int/nutrition/topics/5_population_nutrient/en/index.25html. Retrieved 10 Aug 2013.

  3. Lane JM, Russell L, Kahn SN. Osteoporosis. Clin Orthop Relat Res. 2000;372:139–50 (abstract).

    Article  PubMed  Google Scholar 

  4. Jones G, Nguyen T, Sambrook PV, Kelly PJ, Gilbert C, Eisman JA, et al. Symptomatic fracture incidence in elderly men and women: the Dubbo Osteoporosis Epidemiological Study (DOES). Osteoporosis Int. 1994;4:277–82.

    Article  CAS  Google Scholar 

  5. Gass M, Dawson-Hughes B. Preventing osteoporosis – related fractures: an overview. Am J Med. 2006;119(4):S3–11 (abstract).

    Article  PubMed  Google Scholar 

  6. Sanders KM, Nicholoson GC, Ugone AM, Pasco JA, Seeman E, Kotowicz MA, et al. Health burden of hip and other fractures in Australia beyond 2000. Projections made on the Geelong Osteoporosis study. Med J Aust. 1999;170:467–76.

    CAS  PubMed  Google Scholar 

  7. Access Economics. The burden of brittle bones. Cost of osteoporosis in Australia. Canberra: Access Economics; 2001.

    Google Scholar 

  8. Raiz L. Pathogenesis of osteoporosis: concepts, conflicts and prospects. J Clin Invest. 2005;115(12):3318–25.

    Article  Google Scholar 

  9. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Knosaki M, Mochizuki S, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A. 1998;95(7):3597–602.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. International Osteoporosis Foundation. Pathophysiology: biological causes of osteoporosis. http://www.iofbonehealth.org/pathpphysiology-biological-causes-osteoporosis. Retrieved 13 Aug 2013.

  11. Dennison E, Cooper C. The epidemiology of osteoporosis. Brit Int Clin Pract. 1996;50:33–6.

    CAS  Google Scholar 

  12. Hadjidakis DJ, Androulakis II. Bone remodelling. Ann N Y Acad Sci. 2006;1092:385–96 (abstract).

    Article  CAS  PubMed  Google Scholar 

  13. Raisz LG. Physiology and pathophysiology of bone remodelling. Clin Chem. 1998;45(8):1353–8 (abstract).

    Google Scholar 

  14. Heaney RP. Pathophysiology of osteoporosis. Endocrinol Metab Clin North Am. 1998;27(2):255–65.

    Article  CAS  PubMed  Google Scholar 

  15. Gorman D, Poole P, Sir Scott J. Osteoporosis: it’s time to ‘mind the gap’ Editorial. Int Med J. 2007;37:672–3.

    Article  Google Scholar 

  16. Cauley JA. Osteoporosis in men: prevalence and investigation. Clin Cornerstone. 2006;8 Suppl 3:S20–5 (abstract).

    Article  PubMed  Google Scholar 

  17. O’Neill TW, Felsenberg D, Varlow J, Cooper C, Kanis JA, Silman AJ. The prevalence of vertebral deformity in European men and women: the European Vertebral Osteoporosis Study. J Bone Mineral Res. 1996;11:1010–8.

    Article  Google Scholar 

  18. Burger H, van Dale PLA, Grashuis K, Hofman A, Grobber DE, Shutte HE, et al. Vertebral deformities and functional impairment in men and women. J Bone Mineral Res. 1997;12:152–7.

    Article  CAS  Google Scholar 

  19. Ebeling PR. Osteoporosis in men. New insights into aetiology pathogenesis, prevention and management. Drugs Aging. 1998;13:421–34.

    Article  CAS  PubMed  Google Scholar 

  20. Seeman E. Osteoporosis in men. Baillieres Clin Rheumatol. 1997;11(3):613–29 (abstract).

    Article  CAS  PubMed  Google Scholar 

  21. Kasperk CH, Wakley GK, Hierl T, Ziegler R. Gonadal and adrenal androgens are potent regulators of human bone cell metabolism in vitro. J Bone Mineral Res. 1997;12:464–71.

    Article  CAS  Google Scholar 

  22. Belido T, Jilka RL, Boyce BF, Girasole G, Broxmeyer N, Dalrymple SA, et al. Regulation of interleukin-6, osteoclastogenesis and bone mass by androgens the role of the androgen receptors. J Clin Invest. 1995;95:2886–95.

    Article  Google Scholar 

  23. Anderson FH, Francis RM, Bishop JC, Rawlings DJ. Effect of intermittent cyclical disodium etidronate therapy on bone mineral density in men with vertebral fractures. Age Ageing. 1997;26:359–65.

    Article  CAS  PubMed  Google Scholar 

  24. Smith EP, Boyd J, Frank GR, Takahashi H, Cohen RM, Specker B, et al. Oestrogen resistance caused by mutation in the oestrogen-receptor gene in man. NEJM. 1994;331:1056–61.

    Article  CAS  PubMed  Google Scholar 

  25. Anderson FH. Osteoporosis in men. Int J ClinPract. 1998;52:176–80.

    CAS  Google Scholar 

Osteomalacia

  1. Binet A, Kooh SW. Persistence of vitamin D deficiency rickets in Toronto in the 1990s. Can J Pub Health. 1996;87(4):227–30.

    CAS  Google Scholar 

  2. Woitge HW, Scheidt Navi C, Kissling C, Leidigbruckner G, Meyer K, Grauer A, et al. Seasonal variation of biochemical of bone turnover. J Clin Endocrinol Metab. 1998;83(1):68–75.

    CAS  PubMed  Google Scholar 

  3. Annweiler C, Montero-Odass M, Schott AM, Berrut G, Chauvire V, Le Gal D, et al. Fall prevention and vitamin D in elderly: an overview of the key role of non-bone effects. J Neuroeng Rehabil. 2010;7:50.

    Article  PubMed Central  PubMed  Google Scholar 

Paget’s Disease

  1. Josse RG, Hanley DA, Kendler D, Ste Marie LG, Adachi JD, Brown J. Diagnosis and treatment of Paget’s disease of bone. Clin Invest Med. 2007;30(5):E210–23 (abstract).

    CAS  PubMed  Google Scholar 

  2. Cooper C, Harvey NC, Dennison EM, van Staa TP. Update on the epidemiology of Paget’s disease of bone. J Bone Miner Res. 2006;21 Suppl 2:3–8 (abstract).

    Article  Google Scholar 

  3. Elgazzar AH. Diagnosis of metabolic endocrine and congenial bone disease-Paget’s disease (osteitis deformans). Chapter 3 in Orthopedic Nuclear Medicine. Elgazzar AH. Heidelberg: Springer-Verlag; 2004.

    Google Scholar 

  4. Siris ES, Lyles KW, Singer FR, Meunoier PJ. Medical management of Paget’s disease of bone: indications for treatment and review of current therapies. J Bone Miner Res. 2006;21 Suppl 2:94–8 (abstract).

    Article  Google Scholar 

  5. Daroszewska A, Ralston SH. Genetics of Paget’s disease of bone. Clin Sci (Lond). 2005;109(3):257–63 (abstract).

    Article  CAS  Google Scholar 

  6. Ralston SH, Langston AL, Reid IR. Pathogenesis and management of Paget’s disease of bone. Lancet. 2008;372(9633):155–63 (abstract).

    Article  CAS  PubMed  Google Scholar 

  7. Mei AP. Paramyxovirus and Paget’s disease: the affirmative view. Bone. 1999;24(5 suppl):19S–21 (abstract).

    Article  Google Scholar 

  8. Abelson A. A review of Paget’s disease of bone with a focus on the efficacy and safety of zoledronic acid 5 mg. Curr Med Res. 2008;24(3):695–705 (abstract).

    Article  CAS  Google Scholar 

Hip Fracture

  1. Maggi S, Kelsey JL, Litvak J, Heyse SP. Incidence of hip fractures in the elderly: a cross-national analysis. Osteoporosis Int. 1991;1(4):232–41 (abstract).

    Article  CAS  Google Scholar 

  2. Jensen JS, Tandevold E. Mortality after hip fractures. Acta Orthop Scand. 1979;50:161–7.

    Article  CAS  PubMed  Google Scholar 

  3. Cummings SR, Kelsey JL, Nevitt MC, O’Dowd KJ. Epidemiology of osteoporosis and osteoporotic fractures. Epidemiol Rev. 1985;7:178–208.

    CAS  PubMed  Google Scholar 

  4. Karagas MR, Lu-Yao GL, Barett JA, Beach ML, Baron JA. Heterogeneity of hip fractures age, sex and geographic patterns of femoral neck and trochanteric fractures among the US elderly. Am J Epidemiol. 1996;143:617.

    Article  Google Scholar 

  5. Nyberg L, Gustafosn Y. Patient falls in stroke rehabilitation. Stroke. 1995;26:838–45.

    Article  CAS  PubMed  Google Scholar 

  6. Sinaki M. Falls fractures and hip pads. Curr Osteoporos Rep. 2004;2(4):131–7 (abstract).

    Article  PubMed  Google Scholar 

Vertebral Fractures

  1. Black D, Arden NK, Palermo L, Pearson J, Cummings SR. Prevalent vertebral fractures predict hip fractures and new vertebral deformities but not wrist fractures. J Bone Miner Resl. 1999;14:521–8.

    Google Scholar 

  2. Cooper C, Atkinson ED, Fallon WM, Melton 3rd LT. Incidence of clinically diagnosed vertebral fractures: a population based study in Rochester Minnesota. J Bone Miner Res. 1992;7:221–7.

    Article  CAS  PubMed  Google Scholar 

  3. Waterloo S, Ahmed LA, Center JR, Eisman J, Morseth B, Nguyen N, et al. Prevalence of vertebral fractures in women and men in the population-based Troms Study. BMC Muscular Skeletal Disorders. 2012;14:3. doi:10.1186/1471-247-13-3.

    Article  Google Scholar 

  4. Haczyski J, Jakimiuk A. Vertebral fractures: a hidden problem of osteoporosis. Med Sci Monit. 2001;7(5):1108–17 (abstract).

    Google Scholar 

  5. Heaney RP. Pathophysiology of osteoporosis. Endocrinol Metab Clin North Am. 1998;27(2):255–65.

    Article  CAS  PubMed  Google Scholar 

  6. Dennison E, Cooper C. The epidemiology of osteoporosis. BJCP. 1996;50(1):33–6.

    CAS  Google Scholar 

  7. Seeman E. Osteoporosis in men. Baillieres Clin Rheumatol. 1997;11(3):613–29 (abstract).

    Article  CAS  PubMed  Google Scholar 

  8. Francis RM, Baillie SP, Chuck AJ, Crook PR, Dunn N, Fordham JN, et al. Acute and long term management of patients with vertebral fractures. QJM. 2004;97(2):63–74 (abstract).

    Article  CAS  PubMed  Google Scholar 

  9. Lips P, Obrant KJ. The pathogenesis and treatment of hip fractures. Osteoporosis Int. 1991;1(4):218–31.

    Article  CAS  Google Scholar 

Sacral Insufficiency Fractures

  1. Cooper KL, Beabout JW, Sweet RG. Insufficiency fractures of the sacrum. Radiology. 1985;156:15–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Multiple Choice Questions

  1. 1.

    The following age-related bone changes are true, EXCEPT:

    1. A.

      Bone mass peaks in both men and women between 25 and 30 years and then plateaus for about 10 years and diminishes thereafter.

    2. B.

      Men in their fifth and sixth decade of life and women in their fourth decade develop a gradual loss of skeletal mass.

    3. C.

      Several studies have shown an increase in the level of PTH with age and calcitonin, and the most active metabolites of vitamin D3 are seen to decrease with age.

    4. D.

      The amount of trabecular bone loss on the iliac crest and spine is different in both genders during ageing.

  2. 2.

    The following are true in regard to the pathogenesis of osteoporosis, EXCEPT:

    1. A.

      Age-related osteoporosis occurs in men and women over the age of 70 and affects cortical and trabecular bone.

    2. B.

      The osteoclasts differentiated from mesenchymal cells lay down the matrix in the formation phase.

    3. C.

      Parathyroid hormone, calcitriol and other hormones such as glucocorticoids, growth, thyroid and sex hormones are the major systemic regulators.

    4. D.

      The disruption of the microarchitecture in trabecular bone, decreased density and changed bone material quality lead to bone fragility.

  3. 3.

    The following are true of Paget’s disease, EXCEPT:

    1. A.

      There is increased bone resorption.

    2. B.

      The disordered bone may be largely avascular.

    3. C.

      Genetic and environmental factors are implicated in Paget’s disease.

    4. D.

      Any one of the several bones may be affected most in the skull, tibiae, vertebrae and clavicle.

  4. 4.

    The following in relation to fractures in the elderly with osteoporosis are true, EXCEPT:

    1. A.

      Vertebral fractures are the result of a combination of ageing and bone fragility.

    2. B.

      The fracture sites in osteoporosis are the ribs, clavicle and vertebrae.

    3. C.

      Sacral insufficiency fractures occur in osteoporotic bone, metabolic bone disease and following radiotherapy.

    4. D.

      In men vertebral fractures are associated with severe trauma.

Answers to MCQs

1 = D; 2 = B; 3 = B; 4 = B.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nagaratnam, N., Nagaratnam, K., Cheuk, G. (2016). Metabolic Bone Disorders in the Elderly. In: Diseases in the Elderly. Springer, Cham. https://doi.org/10.1007/978-3-319-25787-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25787-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25785-3

  • Online ISBN: 978-3-319-25787-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics