Skip to main content

Green Metrics, an Abridged Glossary

  • Chapter
  • First Online:
Paradigms in Green Chemistry and Technology

Part of the book series: SpringerBriefs in Molecular Science ((GREENCHEMIST))

Abstract

Green chemistry is an aspiration, and  the advancement in this field must be recognized and quantitatively assessed. Various proposals of a green metrics have been put forward, based on the consumption of resources, the coproduction of waste, the environmental performance. These are briefly presented, pointing out the specific advantages and limitation of each one. In general, such metrics must blend high level of information supplied with accessibility. Software for several such metrics is freely available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li C-J, Trost BM (2008) Green chemistry for chemical synthesis. Proc Nat Acad Sci 105:13197–13202

    Article  CAS  Google Scholar 

  2. Constable DJC, Curzons AD, Cunningham VL (2002) Metrics to ‘green’ chemistry—which are the best? Green Chem 4:521–527

    Article  CAS  Google Scholar 

  3. Eissen M, Mazur R, Quebbemann H-G, Pennemann K-H (2004) Atom economy and yield of synthesis sequences. Helv Chim Acta 87:524–535

    Article  CAS  Google Scholar 

  4. Curzons AD, Constable DJC, Mortimerand DN, Cunningham VL (2001) So you think your process is green, how do you know?—Using principles of sustainability to determine what is green–a corporate perspective. Green Chem 3:1–6

    Article  CAS  Google Scholar 

  5. Andraos J (2005) Unification of reaction metrics for green chemistry: applications to reaction analysis. Org Proc Res Dev 9:149–163

    Article  CAS  Google Scholar 

  6. Sheldon RA (2012) Fundamentals of green chemistry: efficiency in reaction design. Chem Soc Rev 41:1437–1451

    Article  CAS  Google Scholar 

  7. Sheldon RA (2000) Atom utilisation, E factors and the catalytic solution. C R Acad Sci Paris, IIc, Chimie/Chemistry 3:541–551; Sheldon RA (2007) The E factor: fifteen years on. Green Chem 9:1273–1283

    Google Scholar 

  8. Andraos J, Dicks AP (2012) Green chemistry teaching in higher education: a review of effective practices. Chem Educ Res Pract 13:69–79

    Article  CAS  Google Scholar 

  9. Jiménez-Gonzàlez C, Ponder CS, Broxterman QB, Manley JB (2011) Using the right green yardstick: why process mass intensity is used in the pharmaceutical industry to drive more sustainable processes. Org Process Res Dev 15:912–917

    Article  Google Scholar 

  10. Calvo-Flores LFG (2009) Sustainable chemistry metrics. ChemSusChem 2:905–919

    Article  CAS  Google Scholar 

  11. Andraos J, Sayed M (2007) On the use of ‘‘green’’ metrics in the undergraduate organic chemistry lecture and lab to assess the mass efficiency of organic reactions. J Chem Educ 84:1004–1010

    Article  CAS  Google Scholar 

  12. Roschangar F, Sheldon RA, Senanayake CH (2015) Overcoming barriers to green chemistry in the pharmaceutical industry—the Green Aspiration LevelTM concept. Green Chem 17:752–768

    Article  CAS  Google Scholar 

  13. Newhouse T, Baran PS, Hoffmann RW (2009) The economies of synthesis. Chem Soc Rev 38:3010–3021

    Article  CAS  Google Scholar 

  14. Hudlicky T, Frey DA, Koroniak L, Claeboe CD, Brammer LE Jr (1999) Toward a ‘reagent-free’ synthesis. Green Chem 1:57–59

    Article  CAS  Google Scholar 

  15. Van Aken K, Strekowski L, Patiny L (2006) EcoScale, a semi-quantitative tool to select an organic preparation based on economical and ecological parameters, Beilstein J Org Chem 2. doi:10.1186/1860-5397-2-3

    Google Scholar 

  16. (a) Turney RD, Mansfield DP, Malmen Y, Rogers RL, Verwoered M, Soukas E, Plaisier A (1997) The INSIDE project on inherent SHE in process development and design—the toolkit and its application. ChemESymp Ser 141:202; (b) Koller G, Fischer U, Hungerbühler K (1999) Assessment of environment-, health, and safety aspects of fine chemical processes during early design phases. Comput Chem Eng 23:S63–S66

    Google Scholar 

  17. (a) Koller G, Fischer U, Hungerbühler K (2000) Assessing safety, health, and environmental impact early during process development. Ind Eng Chem Res 39:960–972 (http://www.sust-chem.ethz.ch/). (b) Baenziger M, Mak C-P, Muehle H, Nobs F, Prikoszovich W, Reber J-L, Sunay U (1997) Practical Synthesis of 8α-Amino-2,6-dimethylergoline: an Industrial Perspective. Org Proc Res Dev 1:395–406

  18. See for review: http://www.oc-praktikum.de/en/articles/pdf/EnergyIndices_en.pdf

  19. Ravelli D, Protti S, Fagnoni M, Albini A (2013) Visible light photocatalysis. A green choice? Curr Org Chem 17:2366–2373

    Article  CAS  Google Scholar 

  20. See for review: Köpffer W (1997) Life cycle assessment from the beginning to the current state. Environ Sci Pollut Res 4:223–228

    Google Scholar 

  21. Kralisch D, Staffel C, Ott D, Bensaid S, Saracco G, Bellantoni P, Loe P (2013) Process design accompanying life cycle management and risk analysis as a decision support tool for sustainable biodiesel production. Green Chem 15:463–477

    Article  CAS  Google Scholar 

  22. Baumann H, Tillman AM (2004) The Hitch Hiker’s guide to LCA. An orientation in life cycle assessment methodology and application (swepub.kb.se); Ravelli D, Protti S, Neri P, Fagnoni M, Albini A (2011) Photochemical technologies assessed: the case of rose oxide, Green Chem 13:1876–1884

    Google Scholar 

  23. Curzons AD, Jiménez-González C, Duncan AL, Constable DJC, Cunningham VL (2007) Fast life cycle assessment of synthetic chemistry (FLASCTM) tool. Int J LCA 12:272–280

    Article  CAS  Google Scholar 

  24. For further reviews on green metris see: Lapkin A, Constable D (eds) (2008) Green chemistry metrics: measuring and monitoring sustainable processes. Wiley-Blackwell, London, p 344

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Albini .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Albini, A., Protti, S. (2016). Green Metrics, an Abridged Glossary. In: Paradigms in Green Chemistry and Technology. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-25895-9_2

Download citation

Publish with us

Policies and ethics