Skip to main content

Patch-Based Mathematical Morphology for Image Processing, Segmentation and Classification

  • Conference paper
  • First Online:
Advanced Concepts for Intelligent Vision Systems (ACIVS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9386))

Abstract

In this paper, a new formulation of patch-based adaptive mathematical morphology is addressed. In contrast to classical approaches, the shape of structuring elements is not modified but adaptivity is directly integrated into the definition of a patch-based complete lattice. The manifold of patches is learned with a nonlinear bijective mapping, interpreted in the form of a learned rank transformation together with an ordering of vectors. This ordering of patches relies on three steps: dictionary learning, manifold learning and out of sample extension. The performance of the approach is illustrated with innovative examples of patch-based image processing, segmentation and texture classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aptoula, E., Lefèvre, S.: A comparative study on multivariate mathematical morphology. Pattern Recognit. 40(11), 2914–2929 (2007)

    Article  MATH  Google Scholar 

  2. Aptoula, E., Lefèvre, S.: On lexicographical ordering in multivariate mathematical morphology. Pattern Recognition Letters 29(2), 109–118 (2008)

    Article  Google Scholar 

  3. Aptoula, E., Lefèvre, S.: Multivariate mathematical morphology applied to colour image analysis. In: Collet, C., Chanussot, J., Chehdi, K. (eds.) Multivariate Image Processing: Methods and Applications, pp. 303–337. ISTE - John Wiley (2009)

    Google Scholar 

  4. Aptoula, E.: Extending morphological covariance. Pattern Recognition 45(12), 4524–4535 (2012)

    Article  Google Scholar 

  5. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  6. Buades, A., Coll, B., Morel, J.M.: Image denoising methods. A new nonlocal principle. SIAM Review 52(1), 113–147 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chanussot, J., Lambert, P.: Bit mixing paradigm for multivalued morphological filters. In: International Conference on Image Processing and Its Applications, vol. 2, pp. 804–808 (1997)

    Google Scholar 

  8. Ćurić, V., Landström, A., Thurley, M.J., Hendriks, C.L.L.: Adaptive mathematical morphology - a survey of the field. Pattern Recognition Letters 47, 18–28 (2014)

    Article  Google Scholar 

  9. Gersho, A., Gray, R.: Vector Quantization and Signal Compression. Kluwer Academic (1991)

    Google Scholar 

  10. Goutsias, J., Heijmans, H., Sivakumar, K.: Morphological operators for image sequences. Computer Vision and Image Understanding 62(3), 326–346 (1995)

    Article  Google Scholar 

  11. Lee, J.A., Verleysen, M.: Nonlinear Dimensionality Reduction. Springer (2007)

    Google Scholar 

  12. Lezoray, O., Charrier, C., Elmoataz, A.: Rank transformation and manifold learning for multivariate mathematical morphology. In: EUSIPCO (European Signal Processing Conference), pp. 35–39 (2009)

    Google Scholar 

  13. Lézoray, O., Elmoataz, A.: Nonlocal and multivariate mathematical morphology. In: International Conference on Image Processing (IEEE), pp. 129–132 (2012)

    Google Scholar 

  14. Maragos, P., Vachier, C.: Overview of adaptive morphology: trends and perspectives. In: 2009 16th IEEE International Conference on Image Processing (ICIP), pp. 2241–2244, November 2009

    Google Scholar 

  15. Ojala, T., Maenpaa, T., Pietikainen, M., Viertola, J., Kyllonen, J., Huovinen, S.: Outex - new framework for empirical evaluation of texture analysis algorithms. In: 2002 Proceedings of the 16th International Conference on Pattern Recognition, vol. 1, pp. 701–706 (2002)

    Google Scholar 

  16. Peyré, G.: Manifold models for signals and images. Computer Vision and Image Understanding 113(2), 249–260 (2009)

    Article  Google Scholar 

  17. Roerdink, J.: Adaptivity and group invariance in mathematical morphology. In: 2009 16th IEEE International Conference on Image Processing (ICIP), pp. 2253–2256, November 2009

    Google Scholar 

  18. Ronse, C.: Why mathematical morphology needs complete lattices. Signal Processing 21(2), 129–154 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  19. Salembier, P.: Study on nonlocal morphological operators. In: International Conference on Image Processing (IEEE), pp. 2269–2272 (2009)

    Google Scholar 

  20. Ta, V.T., Elmoataz, A., Lezoray, O.: Nonlocal morphological levelings by partial difference equations over weighted graphs. In: CD Proceedings of the ICPR (International Conference on Pattern Recognition) (2008)

    Google Scholar 

  21. Ta, V.-T., Elmoataz, A., Lézoray, O.: Partial difference equations over graphs: morphological processing of arbitrary discrete data. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 668–680. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Ta, V., Elmoataz, A., Lézoray, O.: Nonlocal PDES-based morphology on weighted graphs for image and data processing. IEEE Transactions on Image Processing 20(6), 1504–1516 (2011)

    Article  MathSciNet  Google Scholar 

  23. Talwalkar, A., Kumar, S., Mohri, M., Rowley, H.A.: Large-scale SVD and manifold learning. Journal of Machine Learning Research 14(1), 3129–3152 (2013)

    MATH  MathSciNet  Google Scholar 

  24. Velasco-Forero, S., Angulo, J.: Mathematical morphology for vector images using statistical depth. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 355–366. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  25. Velasco-Forero, S., Angulo, J.: On nonlocal mathematical morphology. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 219–230. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  26. Yang, S., Li, J.X.: Spatial-variant morphological filters with nonlocal-patch-distance-based amoeba kernel for image denoising. Image Analysis and Stereology 34(1), 63–72 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Lézoray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Lézoray, O. (2015). Patch-Based Mathematical Morphology for Image Processing, Segmentation and Classification. In: Battiato, S., Blanc-Talon, J., Gallo, G., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2015. Lecture Notes in Computer Science(), vol 9386. Springer, Cham. https://doi.org/10.1007/978-3-319-25903-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25903-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25902-4

  • Online ISBN: 978-3-319-25903-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics