Skip to main content

Flame Propagation by Spark Discharge Initiation

  • Chapter
  • First Online:
The Modes of Gaseous Combustion

Part of the book series: Heat and Mass Transfer ((HMT))

  • 1084 Accesses

Abstract

Regularities of formation of spherical flames in the mixtures of some hydrocarbons with oxygen and inert additives in the constant volumereactor were established by means of color speed cinematography. Numerical investigation into specific surface effects in flame propagation of lean and rich laminar flames at different wall boundary conditions and fuel–air ratios was performed by means of two dimensional simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zel’dovich, Y.B., Barenblatt, G.A., Machviladze, D.V., Teytel’boym, A.A. (ed.).: Mathematical theory of flame propagation, 620 pp. Nauka, Moscow (1980) (in Russian)

    Google Scholar 

  2. Ksandopulo, G.I., Dubinin, V.V. (ed.).: Chemistry of Gaseous Combustion, 240 pp. Chimia, Moscow (1987) (in Russian)

    Google Scholar 

  3. Macek, A.: Effect of additives on formation of spherical detonation waves in hydrogen-oxygen-mixtures. AIAA J. 1(8), 1915–1918 (1963)

    Article  Google Scholar 

  4. Lewis, B., Von Elbe, G.: Combustion, Explosions and Flame in Gases, p. 566. Academic Press, New York (1987)

    Google Scholar 

  5. Zel’dovich, Y.B: Chain reactions in hot flames—an approximate theory of flame propagation. Kinet. Catal. 2, 305 (1961) (in Russian)

    Google Scholar 

  6. Rubtsov, N.M., Seplyarsky, B.S., Tsvetkov, G.I., Chernysh, V.I.: Flame propagation limits in H2—air mixtures in the presence of small inhibitor additives. Mendeleev Commun. 18, 105–108 (2008)

    Article  Google Scholar 

  7. Warnatz, J., Maas, U., Dibble, R.W.: Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation, 3rd edn, p. 299. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  8. Merzhanov, A.G., Haykin, B.I.: Theory of Homogeneous Combustion Waves, 160 p. ISMAN RAS, Chernogolovka (1992) (in Russian)

    Google Scholar 

  9. Betev, A.S., Karpov, V.P., Semenov, E.S.: Nonsteady phenomena in propagation of highly curve flames. Chem. Phys. Rep. 16(10), 1861 (1997)

    Google Scholar 

  10. Hult, J.: Development of Time Resolved Laser Imaging Techniques for Studies of Turbulent Reacting Flows. Lund Reports on Combustion Physics, 120 pp. (2002)

    Google Scholar 

  11. Haydon, A.: The Spectroscopy of Flames, 1st edn, 412 pp. Springer, Berlin

    Google Scholar 

  12. Rozlovski, A.I. (ed.): Fundamentals of Fire Protection when Operating with Combustible Gases and Vapors, 376 pp. Chimia, Moscow (1987) (in Russian)

    Google Scholar 

  13. Seplyarski, B.S., Afanasyev, S.J.: On the theory of hot spot thermal explosion. Chem. Phys. Rep. (Engl.Transl.) 17, 669 (1989)

    Google Scholar 

  14. Seplyarski, B.S., Afanasyev, S.J.: Analysis of unsteady explosion of hot spot. Phys. Combust. Explos. 22, 9 (1989) (in Russian)

    Google Scholar 

  15. Rubtsov, N.M., Seplyarsky, B.S., Tsvetkov, G.I., Chernysh, V.I.: Influence of inert additives on the time of formation of steady spherical fronts of laminar flames of mixtures of natural gas and isobutylene with oxygen under spark initiation. Mendeleev Commun. 19, 15 (2009)

    Google Scholar 

  16. Liu, D., MacFarlane, R.: Laminar burning velocities of H2—air and H2—air–steam flames. Combust. Flame 49, 59 (1983)

    Article  Google Scholar 

  17. Rubtsov, N.M., Seplyarskii, B.S., Chernysh, I., Tsvetkov, I.: Numerical investigation of the effects of surface recombination and initiation for laminar hydrogen flames at atmospheric pressure. Mendeleev Commun. 18, 220 (2008)

    Article  Google Scholar 

  18. Saxena, P., Williams, F.A.: Testing a small detailed chemical-kinetic mechanism for the combustion of hydrogen and carbon monoxide. Combust. Flame 145, 316–323 (2006)

    Article  Google Scholar 

  19. Andrae, J., Björnbom, P.: Wall effects of laminar hydrogen flames over platinum and inert surfaces. AIChE J. 46, 1454 (2000)

    Article  Google Scholar 

  20. Aghalayam, P., Bui, P.A., Vlachos, D.G.: The role of radical wall quenching in flame stability and wall flux. Combust. Theory Model. 2, 515 (1998)

    Article  MATH  Google Scholar 

  21. Azatyan, V.V., Bolodyan, I.A., Navtsenya, V.Y., Shebeko, Y.N.: Dominating role of branching and termination of reaction chains in occurrence of concentration limits of flame propagation. Russ. J. Chem. Phys. A 76, 817 (2002) (2002, 76, 775) (in Russian)

    Google Scholar 

  22. Azatyan, V.V., Alexandrov, E.N., Troshin, A.F.: On the rate of chain origination in the reactions of H2 and D2 with oxygen. Kinet. Catal. (Engl.Transl.) 16, 346 (1975)

    Google Scholar 

  23. Atkinson, R., Baulch, D.L., Cox, R.A., Hampson Jr, R.F., Kerr, J.A., Rossi, M.J., Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: supplement VI. IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry. J. Phys. Chem. Ref. Data 26, 1329 (1997)

    Article  Google Scholar 

  24. Baulch, D.L., Cobos, C.J., Cox, R.A., Esser, C., Frank, P., Just, Th., Kerr, J.A., Pilling, M.J., Troe, J., Walker, R.W., Warnatz, J.: Evaluated kinetic data for combustion modeling. J. Phys. Chem. Ref. Data 21, 411 (1992)

    Article  Google Scholar 

  25. Ryu, S.-O., Hwang, S.M., Rabinowitz, M.J.: Rate coefficient of the OCH via shock-tube laser absorption spectroscopy. Chem. Phys. Lett. 242, 279 (1995)

    Article  Google Scholar 

  26. Baulch, D.L., Bowman, C.T., Cobos, C.J., Cox, R.A., Just, Th., Kerr, J.A., Pilling, M.J., Stocker, D., Troe, J., Tsang, W., Walker, R.W., Warnatz, J.: Evaluated kinetic data for combustion modelling: supplement II. J. Phys. Chem. Ref. Data 34, 566 (2005)

    Article  Google Scholar 

  27. Yang, H., Gardiner, W.C., Shin, K.S., Fujii, N.: Shock tube study of the rate coefficient of H + O2–OH + O. Chem. Phys. Lett. 231, 449 (1994)

    Article  Google Scholar 

  28. Park, Y.K., Vlachos, D.G.: Chemistry reduction and thermokinetic criteria for ignition of hydrogen-air mixtures at high pressures. J. Chem. Soc., Faraday Trans. 94, 735 (1998)

    Article  Google Scholar 

  29. Kikoin, I.K. (ed.).: Tables of Physical Values. Handbook, p. 1007. Atomizdat, Moscow (1976) (in Russian)

    Google Scholar 

  30. Hitch, B.D., Senser, D.W.: Reduced H2-O2 mechanisms for use in reacting flow simulation, AIAA-1988-732. In: 26th Aerospace Sciences Meeting, 11 pp. Reno, NV. 11–14 Jan 1988

    Google Scholar 

  31. Konnov A.A.: Refinement of the kinetic mechanism of hydrogen combustion. Chem. Phys. Rep. (Engl.Transl.) 23, 10 (2004)

    Google Scholar 

  32. Rubtsov, N.M., Kotelkin, V.D., Karpov, V.P.: Transition of flame propagation from a non-thermal mode to a chain-thermal one in chain processes with nonlinear branching, Kinet. Catal. (Engl.Transl.) 45, 11 (2004)

    Google Scholar 

  33. Marchuk, G.I.: Methods of Computational Mathematics, 608 pp. Nauka, Moscow (1989) (in Russian)

    Google Scholar 

  34. Bunev, V.A., Babkin, V.S.: Effect of propylene additives on rich hydrogen–air flames. Mendeleev Commun. 12, 120 (2006)

    Google Scholar 

  35. Sokolik, A.S. (ed.).: Self-ignition, Flame and Detonation in Gases. Academy of Sciences USSR, Moscow (1960) (in Russian)

    Google Scholar 

  36. Alexandrov, E.N., Kuznetsov, N.M., Kozlov, S.N.: Initiation of chain and thermal explosion with reactor surface. Phys. Combust. Explos. 43, 44 (2007) (in Russian)

    Google Scholar 

  37. Williams, F.A., Grcar, J.F.: A hypothetical burning-velocity formula for very lean hydrogen–air mixtures. Proc. Combust. Inst. 32(1), 1351–1360 (2009)

    Article  Google Scholar 

  38. Zel’dovich, Y.B.: Selected Works. Chemical Physics and Hydrodynamics. Nauka, Moscow (1980) (in Russian)

    Google Scholar 

  39. Makarov, D.V., Mol’kov, V.V.: Modeling of dynamics of gas explosion in not ventilated vessel by the method of large whirls. Phys. Combust. Explos. 43, 44 (2007) (in Russian)

    Google Scholar 

  40. Ronney, P.D.: Near-limit flame structures at low Lewis number. Combust. Flame 82, 1–14 (1990)

    Article  Google Scholar 

  41. Rayleigh, J.W.: On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. Philos. Mag. 32, 529–546 (1916)

    Article  MATH  Google Scholar 

  42. Landau, L.D., Lifshitz, E.M.: Theoretical Physics. Hydrodynamics, vol. 6. Nauka, Moscow (1986) (in Russian)

    Google Scholar 

  43. Chorin, A.J.: A numerical method for solving incompressible viscous flow problems. J. Comp. Phys. 2, 12–26 (1967)

    Article  MATH  Google Scholar 

  44. Wesseling, P.: An introduction to multigrid methods. Wiley, New York (1992)

    MATH  Google Scholar 

  45. Samarskii, A.A., Gulin, A.V.: Numerical methods of mathematical physics. Nauchnyi Mir, Moscow (2000) (in Russian)

    Google Scholar 

  46. Cashdollar, K.L., Zlochower, I.A., Green, G.M., Thomas, R.A., Hertzberg, M.: Flammability of methane, propane, and hydrogen gases. J. Loss Prev. Process Ind. 13(3–5), 327–340 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nickolai M. Rubtsov .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rubtsov, N.M. (2016). Flame Propagation by Spark Discharge Initiation. In: The Modes of Gaseous Combustion. Heat and Mass Transfer. Springer, Cham. https://doi.org/10.1007/978-3-319-25933-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25933-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25932-1

  • Online ISBN: 978-3-319-25933-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics