Skip to main content

Detonation Limits in Gaseous Systems

  • Chapter
  • First Online:
The Modes of Gaseous Combustion

Part of the book series: Heat and Mass Transfer ((HMT))

  • 1117 Accesses

Abstract

It is illustrated that one-dimensional Zeldovich–von Neumann–Doering model of detonation wave gives satisfactory approach for the description of a stationary detonation wave, despite a large number of the approximations made at the derivation of the equations of the theory. Besides, according to modern literary data on numerical modeling, the neglect of transverse structure of detonation wave in one-dimensional model has no influence on the pressure value in front of DW in comparison with multi-dimensional models. It is experimentally demonstrated that the acoustic resonator (Helmholtz’s resonator) connected to a cylindrical reactor can cause reactor destruction at spark initiation of deflagration in lean (15%) hydrogen mixture with oxygen. That points to a possibility of transition of deflagration to supersonic regime mode near the lower concentration limit of detonation even for small reactor where detonation is obviously impossible. On the basis of Zeldovich–von Neumann–Doering detonation theory with allowance for the  theory of chain processes by the example of the oxidation of hydrogen-rich mixtures in the presence of chemically active additive (inhibitor), it is shown that taking into account reactions of inhibitor with chain carrier leads to “chemical” losses in addition to heat losses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sokolik, A.S.: Self-ignition, Flame and Detonation in Gases. Ed. Academy of Sciences USSR, Moscow (1960) (in Russian)

    Google Scholar 

  2. Zel’dovich, Y.B., Barenblatt, G.A., Machviladze, D.V., Teytel’boym, A.A.: Mathematical Theory of Flame Propagation. Ed. Nauka, Moscow (1980), 620 p (in Russian)

    Google Scholar 

  3. Frank-Kamenetsky, D.A.: Diffusion and Heat Transfer in Chemical Kinetics. Ed. Nauka, Moscow (1967), 492 p (in Russian)

    Google Scholar 

  4. Bertherlot, M., Vielle, P.: Nouvelles recherches sur la propagation des phenomenes explosifs dans les gaz. Ann. de Phys. et Chim. 28, 289 (1881)

    Google Scholar 

  5. Mallard, E., Le Chatelier, H.L.: Recherches experimental et theoretique sur le combustion des melanges gaseaux explosifs. Ann. Min. 8, 274–618 (1881)

    Google Scholar 

  6. Michelson, V.A.: On the normal ignition velocity of explosive gaseous mixtures. Sci. Trans. Imperial Moscow Univ. Math. Phys. 10, 1–93 (1893)

    Google Scholar 

  7. Shepherd, J.E.: Detonation in gases. Proc. Combust. Inst. 32, 83–98 (2009)

    Article  Google Scholar 

  8. Chapman, D.L.: On the rate of explosion in gases. Philos. Mag., Ser. 5 (London: Taylor & Francis) 47(284), 90–104 (1899)

    Google Scholar 

  9. Zeldovich, Y.B., Kompaneets, A.S.: Detonation Theory. Gostechizdat, Moscow (1955), 268 p (in Russian)

    Google Scholar 

  10. Guirao, M., Knystautas, R., Lee, J.H.: A Summary of Hydrogen-Air Detonation Experiments, Department of Mechanical Engineering, McGill University, 817 Sherbrooke St. W., Montreal, Quebec, Canada H3A 2K6 1989 (distribution unlimited)

    Google Scholar 

  11. Solouchin, R.I.: Detonation waves in gases. Adv. Phys. Sci. LXXX(4), 525–549 (1963) (in Russian)

    Google Scholar 

  12. Schyolkin, K.I., Troshin, Y.K.: Gas Dynamics of Combustion. Ed. Academy of sciences USSR, Moscow (1963), 560 p (in Russian)

    Google Scholar 

  13. Austin, J.M., Pintgen, F., Shepherd, J.E.: Reaction zones in highly unstable detonations. Proc. Combust. Inst. 30(2), 1849 (2005)

    Google Scholar 

  14. Botros, B.B., Ng, H.D., Zhu, Y., Ju, Y., Lee, J.H.S.: The evolution and cellular structure of a detonation subsequent to a head-on interaction with a shock wave. Combust. Flame 151, 573 (2007)

    Google Scholar 

  15. Pintgen, F., Austin, J.M., Shepherd, J.E.: Detonation front structure: Variety and characterization. In: Roy, G.D., Frolov, S.M., Santoro, R.J., Tsyganov, S.A. (eds.) Confined Detonations and Pulse Detonation Engines, pp. 105–116. Torus Press, Moscow (2003)

    Google Scholar 

  16. Owens, Z.C.: Flowfield Characterization and Model Development in Detonation Tubes, a dissertation for the Ph.D degree, Stanford University, February 2008

    Google Scholar 

  17. Trotsuk, A.V.: Numerical investigation of reflection of detonation waves from the wedge. Phys. Combust. Explosion 35(6), 97–104 (1999) (in Russian)

    Google Scholar 

  18. Dupre, G., Knystautas, R., Lee, J.H.: Near-limit propagation of detonations in tubes. In: Presented at the 10th International Colloquium on Dvnamics of Explosions and Reactive Systems, Berkeley (1985)

    Google Scholar 

  19. Nettleton, M.A.: Gaseous Detonations: Their Nature, Effects and Control, 255 pp. Chapman and Hall, London (1987)

    Google Scholar 

  20. Macek, A.: Effect of additives on formation of spherical detonation waves in hydrogen-oxygen-mixtures. AIAA J. 1(8), 1915–1918 (1963)

    Article  Google Scholar 

  21. Oran, E.S., Gamezo, V.N.: Origins of the deflagration-to-detonation transition in gas-phase combustion. Combust. Flame 148, 4–47 (2007)

    Google Scholar 

  22. Zeldovich, Y.B., Gelfand, B.E., Kazhdan, Y.M., Frolov, S.M.: Detonation propagation in a rough tube taking into account damping and heat losses. Phys. Combust. Explos. 23(3), 103–112 (1987) (in Russian)

    Google Scholar 

  23. Zeldovich, Y.B.: On the pressure and velocity distribution in the products of detonation explosion, in particular at spherical propagation of detonation wave. J. Exp. Theor. Phys. 12, 389–406 (1942) (in Russian)

    Google Scholar 

  24. Shepherd, J.E., Higgins, A.J.: Shock Waves 15(2), 147 (2006)

    Article  Google Scholar 

  25. GALCIT Explosion Dynamics Laboratory Detonation Database. (2005) (Mail Code 205-45, Caltech Pasadena, CA 91125, jeshep@galcit.caltech.edu)

    Google Scholar 

  26. Falempin, F.: Continuous Detonation Wave Engine. In Advances on Propulsion Technology for High-Speed Aircraft, 2008, (p. 8–1–8–16), Educational Notes RTO-EN-AVT-150, Paper 8. Neuilly-sur-Seine, France: RTO. http://www.rto.nato.int

  27. Zel’dovich, Ya.B.: The question about energetic use of detonation combustion. Zh. Tech. Fiz. 10(17), 1453–1461 (1940); JPPOEL 22

    Google Scholar 

  28. Bohon, Y.A., Naboko, I.M., Fortov, V.E., et.al.: Development of explosion of gas mixture behind shock waves. Prepr. Inst. High Temp. RAS 2–416 (1998) (in Russian)

    Google Scholar 

  29. Salamandra, G.D., Naboko, I.M., Sevastyanova, I. К.: Impulse source of repetitive light flashes. Instrum. Exp. Tech. 2, 124–127 (1959) (in Russian)

    Google Scholar 

  30. Kessler, D.A., Gamezo, V.N., Oran, E.S.: Gas-phase detonation propagation in mixture composition gradients. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 370, 567 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Berkenbosh, A.C.: Capturing detonation waves for reactive Euler equations. Proefschrift Technishe Universiteit Eindhoven, The Nederlands (1995). ISBN 90-75365-04-7, NUGI 811

    Google Scholar 

  32. Zel’dovich, Y.B., Barenblatt, G.A., Librovich, V.B., Machviladze, D.V.: Mathematical Theory of Flame Propagation. Nauka, Moscow (1980) (in Russian)

    Google Scholar 

  33. Markstein, G.H.: Nonsteady Flame Propagation. Pergamon, New York (1964)

    Google Scholar 

  34. Moen, I.O., Funk, J.W., Ward, S.A., Rude, G.M., Thibault, P.A.: In: Bowen, J.R., et al. (eds.) Proceedings of the AIAA Progress in Astronautics and Aeronautics, vol. 94, p. 55. New York (1984)

    Google Scholar 

  35. Roy, G.D., Frolov, S.M., Borisov, A.A., Netzer, D.W.: Pulse detonation propulsion: challenges, current statut and future perspectives. Prog. Energy Combust. Sci. 30, 545–672 (2004)

    Google Scholar 

  36. Knystautas, R., Lee, J.H., Moen, J., Wagner, H.G.: Direct initiation of spherical detonation by a hot turbulent gas jet. In: Symposium on Combustion, Pittsburgh (1978)

    Google Scholar 

  37. Lefebvre, M.H., Oran, E.S., Kailasanath, K., Van Tiggelen, P.J.: The Influence of heat capacity and diluent on detonation structure. Combust. Flame 95, 206–223 (1993)

    Google Scholar 

  38. Shepherd, J.E.: In Proceedings of the ASME Pressure Vessels and Piping Conference, ASME, Paper PVP2006- ICPVT11-93670, Vancouver (2006)

    Google Scholar 

  39. Poludenko, A.Y., Gardiner, T.A., Oran, E.S.: Deflagration-to-detonation transition in unconfined media. In: Proceedings of the 23rd ICDERS (2011)

    Google Scholar 

  40. Searby, G., Rochwerger, D.: A parametric acoustic instability in premixed flames. J. Fluid Mech. 231, 529 (1991)

    Article  MATH  Google Scholar 

  41. Rubtsov, N.M.: Effect of chemically active additives on the velocity of detonation waves and on the limit of gaseous detonation. Mendeleev Commun. 225 (2000)

    Google Scholar 

  42. Rubtsov, N.M., Seplyarsky, B.S., Tsvetkov, G.I., Chernysh, V.I.: Flame propagation limits in H2 + air mixtures in the presence of small inhibitor additives. Mendeleev Commun. 18, 105 (2008)

    Article  Google Scholar 

  43. Naboko, I.M., Rubtsov, N.M., Seplyarskii, B.S., Chrenysh, V.I., Tsvetkov, G.I.: Interaction of the laminar flames of methane–air mixtures with close-meshed spherical and planar obstacles in a closed cylindrical reactor under spark discharge initiation. Mendeleev Commun. 23, 163 (2013)

    Article  Google Scholar 

  44. Moyle, M.P., Morrison, R.B., Churchill, S.W.: Detonation characteristics of hydrogen-oxygen mixtures. A. 1. Ch. E. J. 92–96 (1960)

    Google Scholar 

  45. Zabetakis, M.G.: Safety with Cryogenic Fluids. Plenum Press, New York (1967)

    Book  Google Scholar 

  46. Bondar, Y.A., Ivanov, M.S.: DSMC Study of an H2/O2 detonation wave structure. AIAA Pap. 4510 (2010)

    Google Scholar 

  47. Rubtsov, N.M., Seplyarskii, B.S., Troshin, K.Ya., Chernysh, V.I., Tsvetkov, G.I.: Initiation and propagation of laminar spherical flames at atmospheric pressure. Mendeleev Commun. 21, 218 (2011)

    Google Scholar 

  48. Rubtsov, N.M., Seplyarskii, B.S., Troshin, K.Y., Tsvetkov, G.I., Seplyarskii, B.S.: Investigation into spontaneous ignition of hydrogen–air mixtures in a heated reactor at atmospheric pressure by high-speed cinematography. Mendeleev Commun. 22, 222 (2012)

    Article  Google Scholar 

  49. Rubtsov, N.M., Kotelkin, V.D., Seplyarskii, B.S., Chernysh, V.I., Tsvetkov, G.I.: Investigation into the combustion of lean hydrogen–air mixtures at atmospheric pressure by means of high-speed cinematography. Mendeleev Commun. 21, 215 (2011)

    Article  Google Scholar 

  50. Lewis, V., Von Elbe, G.: Combustion Explosions and Flame in Gases. Academic Press, New York (1987)

    Google Scholar 

  51. Van Tiggelen, P.J., Lefebvre, M.H.: Flame retardants effectiveness. In Gaseous Detonation Mitigation, Halon Options Working Conference, p. 131 (1998)

    Google Scholar 

  52. Zel’dovich, Y.B.: Selected Works, Chemical Physics and Hydrodynamics. Nauka, Moscow (1984) (in Russian)

    Google Scholar 

  53. Borisov, A.A., Kosenkov, V.V., Mailkov, A.E., Mikhalkin, V.N., Khomik, S.V.: Effect of flame inhibitors on detonation characteristics of fuel-air mixtures. Proc. AIAA 312–323 (1993)

    Google Scholar 

  54. Agafonov, G.L., Frolov, S.M.: Calculation of the detonation limits of hydrogen-containing gas mixtures. Fiz. Goreniya Vzryva 1, 92 (1994) (in Russian)

    Google Scholar 

  55. Baulch, D.L., Bowman, C.T., Cobos, C.J., Cox, R.A., Just, T., Kerr, J.A., Pilling, M.J., Stocker, D., Troe, J., Tsang, W., Walker, R.W., Warnatz, J.: Evaluated kinetic data for combustion modelling: supplement II. J. Phys. Chem. Ref. Data 34, 566 (2005)

    Article  Google Scholar 

  56. Semenov, N.N.: On Some Problems of Chemical Kinetics and Reaction Ability. Akademii Nauk SSSR, Moscow (1958) (in Russian)

    Google Scholar 

  57. Baulch, D.L., Cobos, C.J., Cox, R.A., Esser, C., Frank, P., Just, Th., Kerr, J.A., Pilling, M.J., Troe, J., Walker, R.W., Warnatz, J.: Evaluated kinetic data for combustion modeling. J. Phys. Chem. Ref. Data 21, 411–460 (1992)

    Google Scholar 

  58. Harris, G.W., Pitts, J.N.: Rate constants of reactions of atoms with unsaturated hydrocarbons. J. Chem. Phys. 77, 3994 (1982)

    Google Scholar 

  59. Schultz, E., Shepherd, J.: Validation of detailed reaction mechanisms for detonation simulation. In: Explosion Dynamics Laboratory Report FM99-5, 70 pp. Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena (2000)

    Google Scholar 

  60. Kikoin, I.K. (ed.): Tables of Physical Values, Handbook, 1007 pp. Atomizdat, Moscow (1976) (in Russian)

    Google Scholar 

  61. Watanabe, T., Kyogoki, T., Tsunasima, S., Sato, S., Nagase, S.: Kinetic isotope effects in the H + C2H6 = C3H7 reaction. Bull. Chem. Soc. Jpn. 55, 3720 (1982)

    Google Scholar 

  62. Baulch, D.L., Cobos, C.J., Cox, R.A.: Evaluated Kinetic data for combustion modeling, supplement 1. J. Phys. Chem. Ref. Data 23, 847 (1994)

    Google Scholar 

  63. Azatyan, V.V., Baklanov, D.I., Gvozdeva, L.G., Lagutov, Y.P., Merzhanov, A.G., Rubtsov, N.M., Tsvetkov, G.I., Sharov, Y.L., Shcherbak, N.B.: Inhibition of developed detonation of hydrogen-air mixtures. Rus. Dokl. Phys. Chem. 376(1–3), 19 (in Russian)

    Google Scholar 

  64. Azatyan, V.V., Medvedev, S.N., Frolov, S.M.: Numerical modeling of chemical inhibition of detonation of hydrogen-air mixtures, Russ. J. Phys. Chem. B 29(4), 56 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nickolai M. Rubtsov .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rubtsov, N.M. (2016). Detonation Limits in Gaseous Systems. In: The Modes of Gaseous Combustion. Heat and Mass Transfer. Springer, Cham. https://doi.org/10.1007/978-3-319-25933-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25933-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25932-1

  • Online ISBN: 978-3-319-25933-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics