Skip to main content

The Muscle-Bone Connection

  • Chapter
  • First Online:
Osteoporosis in Older Persons

Abstract

The endocrine nature of bones and skeletal muscles has become evident with the identification of several secreted molecules from these tissues. Cell based studies have demonstrated that conditioned media from one tissue can beneficially influence the other. Animal models of bone and muscle research have further supported the bone-muscle biochemical connection. This knowledge, in light of the tight developmental and genetic coupling of these tissues, large bivariate GWAS studies that have identified potentially pleiotropic bone-muscle genes, and the concurrence of osteoporosis and sarcopenia in older adults justifies a closer examination of the biochemical crosstalk between bones and muscles. In-depth understanding of the bone-muscle connection could pave the way to new treatments for musculoskeletal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pourquie O. Vertebrate somitogenesis. Annu Rev Cell Dev Biol. 2001;17:311–50. doi:10.1146/annurev.cellbio.17.1.311.

    Article  CAS  PubMed  Google Scholar 

  2. Land C, Schoenau E. Fetal and postnatal bone development: reviewing the role of mechanical stimuli and nutrition. Best Pract Res Clin Endocrinol Metab. 2008;22(1):107–18. doi:10.1016/j.beem.2007.09.005.

    Article  PubMed  Google Scholar 

  3. Rauch F, Schoenau E. The developing bone: slave or master of its cells and molecules? Pediatr Res. 2001;50(3):309–14. doi:10.1203/00006450-200109000-00003.

    Article  CAS  PubMed  Google Scholar 

  4. Gunter KB, Almstedt HC, Janz KF. Physical activity in childhood may be the key to optimizing lifespan skeletal health. Exerc Sport Sci Rev. 2012;40(1):13–21. doi:10.1097/JES.0b013e318236e5ee.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Recker R, Lappe J, Davies K, Heaney R. Characterization of perimenopausal bone loss: a prospective study. J Bone Miner Res Off J Am Soc Bone Miner Res. 2000;15(10):1965–73. doi:10.1359/jbmr.2000.15.10.1965.

    Article  CAS  Google Scholar 

  6. Hu MC, Shiizaki K, Kuro-o M, Moe OW. Fibroblast growth factor 23 and Klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. Annu Rev Physiol. 2013;75:503–33. doi:10.1146/annurev-physiol-030212-183727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Novotny SA, Warren GL, Hamrick MW. Aging and the muscle-bone relationship. Physiology. 2015;30:8–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Arden NK, Spector TD. Genetic influences on muscle strength, lean body mass, and bone mineral density: a twin study. J Bone Miner Res Off J Am Soc Bone Miner Res. 1997;12(12):2076–81. doi:10.1359/jbmr.1997.12.12.2076.

    Article  CAS  Google Scholar 

  9. Costa AM, Breitenfeld L, Silva AJ, Pereira A, Izquierdo M, Marques MC. Genetic inheritance effects on endurance and muscle strength: an update. Sports Med. 2012;42(6):449–58. doi:10.2165/11650560-000000000-00000.

    Article  PubMed  Google Scholar 

  10. Prior SJ, Roth SM, Wang X, Kammerer C, Miljkovic-Gacic I, Bunker CH, Wheeler VW, Patrick AL, Zmuda JM. Genetic and environmental influences on skeletal muscle phenotypes as a function of age and sex in large, multigenerational families of African heritage. J Appl Physiol. 2007;103(4):1121–7. doi:10.1152/japplphysiol.00120.2007.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Silventoinen K, Magnusson PK, Tynelius P, Kaprio J, Rasmussen F. Heritability of body size and muscle strength in young adulthood: a study of one million Swedish men. Genet Epidemiol. 2008;32(4):341–9. doi:10.1002/gepi.20308.

    Article  PubMed  Google Scholar 

  12. Cheng Y, Rachagani S, Canovas A, Mayes MS, Tait Jr RG, Dekkers JC, Reecy JM. Body composition and gene expression QTL mapping in mice reveals imprinting and interaction effects. BMC Genet. 2013;14:103. doi:10.1186/1471-2156-14-103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Guo YF, Zhang LS, Liu YJ, Hu HG, Li J, Tian Q, Yu P, Zhang F, Yang TL, Guo Y, Peng XL, Dai M, Chen W, Deng HW. Suggestion of GLYAT gene underlying variation of bone size and body lean mass as revealed by a bivariate genome-wide association study. Hum Genet. 2013;132(2):189–99. doi:10.1007/s00439-012-1236-5.

    Article  CAS  PubMed  Google Scholar 

  14. Hai R, Pei YF, Shen H, Zhang L, Liu XG, Lin Y, Ran S, Pan F, Tan LJ, Lei SF, Yang TL, Zhang Y, Zhu XZ, Zhao LJ, Deng HW. Genome-wide association study of copy number variation identified gremlin1 as a candidate gene for lean body mass. J Hum Genet. 2012;57(1):33–7. doi:10.1038/jhg.2011.125.

    Article  CAS  PubMed  Google Scholar 

  15. Keildson S, Fadista J, Ladenvall C, Hedman AK, Elgzyri T, Small KS, Grundberg E, Nica AC, Glass D, Richards JB, Barrett A, Nisbet J, Zheng HF, Ronn T, Strom K, Eriksson KF, Prokopenko I, Consortium M, Consortium D, Mu TC, Spector TD, Dermitzakis ET, Deloukas P, McCarthy MI, Rung J, Groop L, Franks PW, Lindgren CM, Hansson O. Expression of phosphofructokinase in skeletal muscle is influenced by genetic variation and associated with insulin sensitivity. Diabetes. 2014;63(3):1154–65. doi:10.2337/db13-1301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kuo T, Lew MJ, Mayba O, Harris CA, Speed TP, Wang JC. Genome-wide analysis of glucocorticoid receptor-binding sites in myotubes identifies gene networks modulating insulin signaling. Proc Natl Acad Sci U S A. 2012;109(28):11160–5. doi:10.1073/pnas.1111334109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu XG, Tan LJ, Lei SF, Liu YJ, Shen H, Wang L, Yan H, Guo YF, Xiong DH, Chen XD, Pan F, Yang TL, Zhang YP, Guo Y, Tang NL, Zhu XZ, Deng HY, Levy S, Recker RR, Papasian CJ, Deng HW. Genome-wide association and replication studies identified TRHR as an important gene for lean body mass. Am J Hum Genet. 2009;84(3):418–23. doi:10.1016/j.ajhg.2009.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Perusse L, Rankinen T, Rauramaa R, Rivera MA, Wolfarth B, Bouchard C. The human gene map for performance and health-related fitness phenotypes: the 2002 update. Med Sci Sports Exerc. 2003;35(8):1248–64. doi:10.1249/01.MSS.0000078938.84161.22.

    Article  CAS  PubMed  Google Scholar 

  19. Thomis MA, De Mars G, Windelinckx A, Peeters MW, Huygens W, Aerssens J, Beunen GP. Genome-wide linkage scan for resistance to muscle fatigue. Scand J Med Sci Sports. 2011;21(4):580–8. doi:10.1111/j.1600-0838.2009.01082.x.

    Article  CAS  PubMed  Google Scholar 

  20. Windelinckx A, De Mars G, Huygens W, Peeters MW, Vincent B, Wijmenga C, Lambrechts D, Delecluse C, Roth SM, Metter EJ, Ferrucci L, Aerssens J, Vlietinck R, Beunen GP, Thomis MA. Comprehensive fine mapping of chr12q12-14 and follow-up replication identify activin receptor 1B (ACVR1B) as a muscle strength gene. Eur J Hum Genet EJHG. 2011;19(2):208–15. doi:10.1038/ejhg.2010.173.

    Article  CAS  PubMed  Google Scholar 

  21. Duncan EL, Danoy P, Kemp JP, Leo PJ, McCloskey E, Nicholson GC, Eastell R, Prince RL, Eisman JA, Jones G, Sambrook PN, Reid IR, Dennison EM, Wark J, Richards JB, Uitterlinden AG, Spector TD, Esapa C, Cox RD, Brown SD, Thakker RV, Addison KA, Bradbury LA, Center JR, Cooper C, Cremin C, Estrada K, Felsenberg D, Gluer CC, Hadler J, Henry MJ, Hofman A, Kotowicz MA, Makovey J, Nguyen SC, Nguyen TV, Pasco JA, Pryce K, Reid DM, Rivadeneira F, Roux C, Stefansson K, Styrkarsdottir U, Thorleifsson G, Tichawangana R, Evans DM, Brown MA. Genome-wide association study using extreme truncate selection identifies novel genes affecting bone mineral density and fracture risk. PLoS Genet. 2011;7(4):e1001372. doi:10.1371/journal.pgen.1001372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Estrada K, Styrkarsdottir U, Evangelou E, Hsu YH, Duncan EL, Ntzani EE, Oei L, Albagha OM, Amin N, Kemp JP, Koller DL, Li G, Liu CT, Minster RL, Moayyeri A, Vandenput L, Willner D, Xiao SM, Yerges-Armstrong LM, Zheng HF, Alonso N, Eriksson J, Kammerer CM, Kaptoge SK, Leo PJ, Thorleifsson G, Wilson SG, Wilson JF, Aalto V, Alen M, Aragaki AK, Aspelund T, Center JR, Dailiana Z, Duggan DJ, Garcia M, Garcia-Giralt N, Giroux S, Hallmans G, Hocking LJ, Husted LB, Jameson KA, Khusainova R, Kim GS, Kooperberg C, Koromila T, Kruk M, Laaksonen M, Lacroix AZ, Lee SH, Leung PC, Lewis JR, Masi L, Mencej-Bedrac S, Nguyen TV, Nogues X, Patel MS, Prezelj J, Rose LM, Scollen S, Siggeirsdottir K, Smith AV, Svensson O, Trompet S, Trummer O, van Schoor NM, Woo J, Zhu K, Balcells S, Brandi ML, Buckley BM, Cheng S, Christiansen C, Cooper C, Dedoussis G, Ford I, Frost M, Goltzman D, Gonzalez-Macias J, Kahonen M, Karlsson M, Khusnutdinova E, Koh JM, Kollia P, Langdahl BL, Leslie WD, Lips P, Ljunggren O, Lorenc RS, Marc J, Mellstrom D, Obermayer-Pietsch B, Olmos JM, Pettersson-Kymmer U, Reid DM, Riancho JA, Ridker PM, Rousseau F, Slagboom PE, Tang NL, Urreizti R, Van Hul W, Viikari J, Zarrabeitia MT, Aulchenko YS, Castano-Betancourt M, Grundberg E, Herrera L, Ingvarsson T, Johannsdottir H, Kwan T, Li R, Luben R, Medina-Gomez C, Palsson ST, Reppe S, Rotter JI, Sigurdsson G, van Meurs JB, Verlaan D, Williams FM, Wood AR, Zhou Y, Gautvik KM, Pastinen T, Raychaudhuri S, Cauley JA, Chasman DI, Clark GR, Cummings SR, Danoy P, Dennison EM, Eastell R, Eisman JA, Gudnason V, Hofman A, Jackson RD, Jones G, Jukema JW, Khaw KT, Lehtimaki T, Liu Y, Lorentzon M, McCloskey E, Mitchell BD, Nandakumar K, Nicholson GC, Oostra BA, Peacock M, Pols HA, Prince RL, Raitakari O, Reid IR, Robbins J, Sambrook PN, Sham PC, Shuldiner AR, Tylavsky FA, van Duijn CM, Wareham NJ, Cupples LA, Econs MJ, Evans DM, Harris TB, Kung AW, Psaty BM, Reeve J, Spector TD, Streeten EA, Zillikens MC, Thorsteinsdottir U, Ohlsson C, Karasik D, Richards JB, Brown MA, Stefansson K, Uitterlinden AG, Ralston SH, Ioannidis JP, Kiel DP, Rivadeneira F. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nat Genet. 2012;44(5):491–501. doi:10.1038/ng.2249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Karasik D, Hsu YH, Zhou Y, Cupples LA, Kiel DP, Demissie S. Genome-wide pleiotropy of osteoporosis-related phenotypes: the Framingham Study. J Bone Miner Res Off J Am Soc Bone Miner Res. 2010;25(7):1555–63. doi:10.1002/jbmr.38.

    Article  Google Scholar 

  24. Lee YH, Choi SJ, Ji JD, Song GG. Pathway analysis of genome-wide association study for bone mineral density. Mol Biol Rep. 2012;39(8):8099–106. doi:10.1007/s11033-012-1657-1.

    Article  CAS  PubMed  Google Scholar 

  25. Oei L, Hsu YH, Styrkarsdottir U, Eussen BH, de Klein A, Peters MJ, Halldorsson B, Liu CT, Alonso N, Kaptoge SK, Thorleifsson G, Hallmans G, Hocking LJ, Husted LB, Jameson KA, Kruk M, Lewis JR, Patel MS, Scollen S, Svensson O, Trompet S, van Schoor NM, Zhu K, Buckley BM, Cooper C, Ford I, Goltzman D, Gonzalez-Macias J, Langdahl BL, Leslie WD, Lips P, Lorenc RS, Olmos JM, Pettersson-Kymmer U, Reid DM, Riancho JA, Slagboom PE, Garcia-Ibarbia C, Ingvarsson T, Johannsdottir H, Luben R, Medina-Gomez C, Arp P, Nandakumar K, Palsson ST, Sigurdsson G, van Meurs JB, Zhou Y, Hofman A, Jukema JW, Pols HA, Prince RL, Cupples LA, Marshall CR, Pinto D, Sato D, Scherer SW, Reeve J, Thorsteinsdottir U, Karasik D, Richards JB, Stefansson K, Uitterlinden AG, Ralston SH, Ioannidis JP, Kiel DP, Rivadeneira F, Estrada K. A genome-wide copy number association study of osteoporotic fractures points to the 6p25.1 locus. J Med Genet. 2014;51(2):122–31. doi:10.1136/jmedgenet-2013-102064.

    Article  PubMed  Google Scholar 

  26. Ran S, Pei YF, Liu YJ, Zhang L, Han YY, Hai R, Tian Q, Lin Y, Yang TL, Guo YF, Shen H, Thethi IS, Zhu XZ, Deng HW. Bivariate genome-wide association analyses identified genes with pleiotropic effects for femoral neck bone geometry and age at menarche. PLoS One. 2013;8(4):e60362. doi:10.1371/journal.pone.0060362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rivadeneira F, Styrkarsdottir U, Estrada K, Halldorsson BV, Hsu YH, Richards JB, Zillikens MC, Kavvoura FK, Amin N, Aulchenko YS, Cupples LA, Deloukas P, Demissie S, Grundberg E, Hofman A, Kong A, Karasik D, van Meurs JB, Oostra B, Pastinen T, Pols HA, Sigurdsson G, Soranzo N, Thorleifsson G, Thorsteinsdottir U, Williams FM, Wilson SG, Zhou Y, Ralston SH, van Duijn CM, Spector T, Kiel DP, Stefansson K, Ioannidis JP, Uitterlinden AG, Genetic Factors for Osteoporosis C. Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nat Genet. 2009;41(11):1199–206. doi:10.1038/ng.446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Savage SA, Mirabello L, Wang Z, Gastier-Foster JM, Gorlick R, Khanna C, Flanagan AM, Tirabosco R, Andrulis IL, Wunder JS, Gokgoz N, Patino-Garcia A, Sierrasesumaga L, Lecanda F, Kurucu N, Ilhan IE, Sari N, Serra M, Hattinger C, Picci P, Spector LG, Barkauskas DA, Marina N, de Toledo SR, Petrilli AS, Amary MF, Halai D, Thomas DM, Douglass C, Meltzer PS, Jacobs K, Chung CC, Berndt SI, Purdue MP, Caporaso NE, Tucker M, Rothman N, Landi MT, Silverman DT, Kraft P, Hunter DJ, Malats N, Kogevinas M, Wacholder S, Troisi R, Helman L, Fraumeni Jr JF, Yeager M, Hoover RN, Chanock SJ. Genome-wide association study identifies two susceptibility loci for osteosarcoma. Nat Genet. 2013;45(7):799–803. doi:10.1038/ng.2645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang L, Choi HJ, Estrada K, Leo PJ, Li J, Pei YF, Zhang Y, Lin Y, Shen H, Liu YZ, Liu Y, Zhao Y, Zhang JG, Tian Q, Wang YP, Han Y, Ran S, Hai R, Zhu XZ, Wu S, Yan H, Liu X, Yang TL, Guo Y, Zhang F, Guo YF, Chen Y, Chen X, Tan L, Zhang L, Deng FY, Deng H, Rivadeneira F, Duncan EL, Lee JY, Han BG, Cho NH, Nicholson GC, McCloskey E, Eastell R, Prince RL, Eisman JA, Jones G, Reid IR, Sambrook PN, Dennison EM, Danoy P, Yerges-Armstrong LM, Streeten EA, Hu T, Xiang S, Papasian CJ, Brown MA, Shin CS, Uitterlinden AG, Deng HW. Multistage genome-wide association meta-analyses identified two new loci for bone mineral density. Hum Mol Genet. 2014;23(7):1923–33. doi:10.1093/hmg/ddt575.

    Article  CAS  PubMed  Google Scholar 

  30. Gupta M, Cheung CL, Hsu YH, Demissie S, Cupples LA, Kiel DP, Karasik D. Identification of homogeneous genetic architecture of multiple genetically correlated traits by block clustering of genome-wide associations. J Bone Miner Res Off J Am Soc Bone Miner Res. 2011;26(6):1261–71. doi:10.1002/jbmr.333.

    Article  CAS  Google Scholar 

  31. Karasik D, Cohen-Zinder M. Osteoporosis genetics: year 2011 in review. Bonekey Rep. 2012;1:114. doi:10.1038/bonekey.2012.114.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Karasik D, Kiel DP. Evidence for pleiotropic factors in genetics of the musculoskeletal system. Bone. 2010;46(5):1226–37. doi:10.1016/j.bone.2010.01.382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Karasik D, Zhou Y, Cupples LA, Hannan MT, Kiel DP, Demissie S. Bivariate genome-wide linkage analysis of femoral bone traits and leg lean mass: Framingham study. J Bone Miner Res Off J Am Soc Bone Miner Res. 2009;24(4):710–8. doi:10.1359/jbmr.081222.

    Article  Google Scholar 

  34. Sun L, Tan LJ, Lei SF, Chen XD, Li X, Pan R, Yin F, Liu QW, Yan XF, Papasian CJ, Deng HW. Bivariate genome-wide association analyses of femoral neck bone geometry and appendicular lean mass. PLoS One. 2011;6(11):e27325. doi:10.1371/journal.pone.0027325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Edmondson DG, Lyons GE, Martin JF, Olson EN. Mef2 gene expression marks the cardiac and skeletal muscle lineages during mouse embryogenesis. Development. 1994;120(5):1251–63.

    CAS  PubMed  Google Scholar 

  36. Kramer I, Baertschi S, Halleux C, Keller H, Kneissel M. Mef2c deletion in osteocytes results in increased bone mass. J Bone Miner Res Off J Am Soc Bone Miner Res. 2012;27(2):360–73. doi:10.1002/jbmr.1492.

    Article  CAS  Google Scholar 

  37. Cloutier P, Lavallee-Adam M, Faubert D, Blanchette M, Coulombe B. A newly uncovered group of distantly related lysine methyltransferases preferentially interact with molecular chaperones to regulate their activity. PLoS Genet. 2013;9(1):e1003210. doi:10.1371/journal.pgen.1003210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang J, Hsu YH, Mo C, Abreu E, Kiel DP, Bonewald LF, Brotto M, Karasik D. METTL21C is a potential pleiotropic gene for osteoporosis and sarcopenia acting through the modulation of the NF-kappaB signaling pathway. J Bone Miner Res Off J Am Soc Bone Miner Res. 2014;29(7):1531–40. doi:10.1002/jbmr.2200.

    Article  CAS  Google Scholar 

  39. Kimonis VE, Fulchiero E, Vesa J, Watts G. VCP disease associated with myopathy, Paget disease of bone and frontotemporal dementia: review of a unique disorder. Biochim Biophys Acta. 2008;1782(12):744–8. doi:10.1016/j.bbadis.2008.09.003.

    Article  CAS  PubMed  Google Scholar 

  40. McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature. 1997;387(6628):83–90. doi:10.1038/387083a0.

    Article  CAS  PubMed  Google Scholar 

  41. Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol. 2012;8(8):457–65. doi:10.1038/nrendo.2012.49.

    Article  CAS  PubMed  Google Scholar 

  42. Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibe B, Bouix J, Caiment F, Elsen JM, Eychenne F, Larzul C, Laville E, Meish F, Milenkovic D, Tobin J, Charlier C, Georges M. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet. 2006;38(7):813–8. doi:10.1038/ng1810.

    Article  CAS  PubMed  Google Scholar 

  43. Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Menissier F, Massabanda J, Fries R, Hanset R, Georges M. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet. 1997;17(1):71–4. doi:10.1038/ng0997-71.

    Article  CAS  PubMed  Google Scholar 

  44. Kambadur R, Sharma M, Smith TP, Bass JJ. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res. 1997;7(9):910–6.

    CAS  PubMed  Google Scholar 

  45. McPherron AC, Lee SJ. Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci U S A. 1997;94(23):12457–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mosher DS, Quignon P, Bustamante CD, Sutter NB, Mellersh CS, Parker HG, Ostrander EA. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet. 2007;3(5), e79. doi:10.1371/journal.pgen.0030079.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Zhang GX, Zhao XH, Wang JY, Ding FX, Zhang L. Effect of an exon 1 mutation in the myostatin gene on the growth traits of the Bian chicken. Anim Genet. 2012;43(4):458–9. doi:10.1111/j.1365-2052.2011.02274.x.

    Article  PubMed  CAS  Google Scholar 

  48. Williams MS. Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med. 2004;351(10):1030–1; author reply 1030–1.

    Article  CAS  PubMed  Google Scholar 

  49. Elkasrawy MN, Hamrick MW. Myostatin (GDF-8) as a key factor linking muscle mass and bone structure. J Musculoskelet Neuronal Interact. 2010;10(1):56–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Williams NG, Interlichia JP, Jackson MF, Hwang D, Cohen P, Rodgers BD. Endocrine actions of myostatin: systemic regulation of the IGF and IGF binding protein axis. Endocrinology. 2011;152(1):172–80. doi:10.1210/en.2010-0488.

    Article  CAS  PubMed  Google Scholar 

  51. Perrini S, Laviola L, Carreira MC, Cignarelli A, Natalicchio A, Giorgino F. The GH/IGF1 axis and signaling pathways in the muscle and bone: mechanisms underlying age-related skeletal muscle wasting and osteoporosis. J Endocrinol. 2010;205(3):201–10. doi:10.1677/JOE-09-0431.

    Article  CAS  PubMed  Google Scholar 

  52. Fakhouri TH, Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of obesity among older adults in the United States, 2007–2010. NCHS Data Brief. 2012;106:1–8.

    PubMed  Google Scholar 

  53. Landry PS, Marino AA, Sadasivan KK, Albright JA. Effect of soft-tissue trauma on the early periosteal response of bone to injury. J Trauma. 2000;48(3):479–83.

    Article  CAS  PubMed  Google Scholar 

  54. Stein H, Perren SM, Cordey J, Kenwright J, Mosheiff R, Francis MJ. The muscle bed–a crucial factor for fracture healing: a physiological concept. Orthopedics. 2002;25(12):1379–83.

    PubMed  Google Scholar 

  55. Utvag SE, Iversen KB, Grundnes O, Reikeras O. Poor muscle coverage delays fracture healing in rats. Acta Orthop Scand. 2002;73(4):471–4. doi:10.1080/00016470216315.

    Article  PubMed  Google Scholar 

  56. Zacks SI, Sheff MF. Periosteal and metaplastic bone formation in mouse minced muscle regeneration. Lab Invest J Tech Methods Pathol. 1982;46(4):405–12.

    CAS  Google Scholar 

  57. Aydin A, Memisoglu K, Cengiz A, Atmaca H, Muezzinoglu B, Muezzinoglu US. Effects of botulinum toxin A on fracture healing in rats: an experimental study. J Orthop Sci Off J Jpn Orthop Assoc. 2012;17(6):796–801. doi:10.1007/s00776-012-0269-x.

    CAS  Google Scholar 

  58. Harry LE, Sandison A, Paleolog EM, Hansen U, Pearse MF, Nanchahal J. Comparison of the healing of open tibial fractures covered with either muscle or fasciocutaneous tissue in a murine model. J Orthop Res Off Publ Orthop Res Soc. 2008;26(9):1238–44. doi:10.1002/jor.20649.

    Article  Google Scholar 

  59. Reverte MM, Dimitriou R, Kanakaris NK, Giannoudis PV. What is the effect of compartment syndrome and fasciotomies on fracture healing in tibial fractures? Injury. 2011;42(12):1402–7. doi:10.1016/j.injury.2011.09.007.

    Article  PubMed  Google Scholar 

  60. Agas D, Marchetti L, Hurley MM, Sabbieti MG. Prostaglandin F2alpha: a bone remodeling mediator. J Cell Physiol. 2013;228(1):25–9. doi:10.1002/jcp.24117.

    Article  CAS  PubMed  Google Scholar 

  61. Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR, Garry PJ, Lindeman RD. Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol. 1998;147(8):755–63.

    Article  CAS  PubMed  Google Scholar 

  62. Beltran-Sanchez H, Harhay MO, Harhay MM, McElligott S. Prevalence and trends of metabolic syndrome in the adult U.S. population, 1999–2010. J Am Coll Cardiol. 2013;62(8):697–703. doi:10.1016/j.jacc.2013.05.064.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Camargo PR, Alburquerque-Sendin F, Salvini TF. Eccentric training as a new approach for rotator cuff tendinopathy: review and perspectives. World J Orthop. 2014;5(5):634–44. doi:10.5312/wjo.v5.i5.634.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Charvet B, Ruggiero F, Le Guellec D. The development of the myotendinous junction. A review. Muscles Ligaments Tendons J. 2012;2(2):53–63.

    PubMed  PubMed Central  Google Scholar 

  65. Choquette S, Bouchard DR, Doyon CY, Senechal M, Brochu M, Dionne IJ. Relative strength as a determinant of mobility in elders 67–84 years of age. A nuage study: nutrition as a determinant of successful aging. J Nutr Health Aging. 2010;14(3):190–5.

    Article  CAS  PubMed  Google Scholar 

  66. Clark BC, Fernhall B, Ploutz-Snyder LL. Adaptations in human neuromuscular function following prolonged unweighting: I. Skeletal muscle contractile properties and applied ischemia efficacy. J Appl Physiol. 2006;101(1):256–63. doi:10.1152/japplphysiol.01402.2005.

    Article  PubMed  Google Scholar 

  67. Clark BC, Manini TM. Sarcopenia =/= dynapenia. J Gerontol A Biol Sci Med Sci. 2008;63(8):829–34.

    Article  PubMed  Google Scholar 

  68. Cohen-Solal M, Funck-Brentano T, Hay E. Animal models of osteoarthritis for the understanding of the bone contribution. Bonekey Rep. 2013;2:422. doi:10.1038/bonekey.2013.156.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Coiro V, Volpi R, Cataldo S, Magotti MG, Maffei ML, Giumelli C, Araldi A, Volpi L, Chiodera P. Effect of physiological exercise on osteocalcin levels in subjects with adrenal incidentaloma. J Endocrinol Invest. 2012;35(4):357–8.

    Article  CAS  PubMed  Google Scholar 

  70. Cooper A. A treatise on dislocations, and on fractures of the joints. Philadelphia: Lea and Blanchard; 1844.

    Google Scholar 

  71. Cosqueric G, Sebag A, Ducolombier C, Thomas C, Piette F, Weill-Engerer S. Sarcopenia is predictive of nosocomial infection in care of the elderly. Br J Nutr. 2006;96(5):895–901.

    Article  CAS  PubMed  Google Scholar 

  72. Cummings SR, Black DM, Nevitt MC, Browner W, Cauley J, Ensrud K, Genant HK, Palermo L, Scott J, Vogt TM. Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group. Lancet. 1993;341(8837):72–5.

    Article  CAS  PubMed  Google Scholar 

  73. Depp CA, Jeste DV. Definitions and predictors of successful aging: a comprehensive review of larger quantitative studies. Am J Geriatr Psychiatry Off J Am Assoc Geriatric Psychiatry. 2006;14(1):6–20. doi:10.1097/01.JGP.0000192501.03069.bc.

    Article  Google Scholar 

  74. Di Monaco M, Vallero F, Di Monaco R, Tappero R. Prevalence of sarcopenia and its association with osteoporosis in 313 older women following a hip fracture. Arch Gerontol Geriatr. 2011;52(1):71–4. doi:10.1016/j.archger.2010.02.002.

    Article  PubMed  Google Scholar 

  75. Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C, Smith E, Bonadio J, Goldstein S, Gundberg C, Bradley A, Karsenty G. Increased bone formation in osteocalcin-deficient mice. Nature. 1996;382(6590):448–52.

    Article  CAS  PubMed  Google Scholar 

  76. Liu R, Schindeler A, Little DG. The potential role of muscle in bone repair. J Musculoskelet Neuronal Interact. 2010;10(1):71–6.

    CAS  PubMed  Google Scholar 

  77. Schindeler A, Liu R, Little DG. The contribution of different cell lineages to bone repair: exploring a role for muscle stem cells. Differ Res Biol Divers. 2009;77(1):12–8. doi:10.1016/j.diff.2008.09.007.

    Article  CAS  Google Scholar 

  78. Griffin XL, Costa ML, Parsons N, Smith N. Electromagnetic field stimulation for treating delayed union or non-union of long bone fractures in adults. Cochrane Database Syst Rev. 2011;4:CD008471. doi:10.1002/14651858.CD008471.pub2.

    Google Scholar 

  79. Leon-Salas WD, Rizk H, Mo C, Weisleder N, Brotto L, Abreu E, Brotto M. A dual mode pulsed electro-magnetic cell stimulator produces acceleration of myogenic differentiation. Recent Pat Biotechnol. 2013;7(1):71–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Elkasrawy M, Immel D, Wen X, Liu X, Liang LF, Hamrick MW. Immunolocalization of myostatin (GDF-8) following musculoskeletal injury and the effects of exogenous myostatin on muscle and bone healing. J Histochem Cytochem Off J Histochem Soc. 2012;60(1):22–30. doi:10.1369/0022155411425389.

    Article  CAS  Google Scholar 

  81. Frost HM. Perspectives: a proposed general model of the “mechanostat” (suggestions from a new skeletal-biologic paradigm). Anat Rec. 1996;244(2):139–47. doi:10.1002/(SICI)1097-0185(199602)244:2<139::AID-AR1>3.0.CO;2-X.

    Article  CAS  PubMed  Google Scholar 

  82. Toledo FG, Goodpaster BH. The role of weight loss and exercise in correcting skeletal muscle mitochondrial abnormalities in obesity, diabetes and aging. Mol Cell Endocrinol. 2013;379(1–2):30–4. doi:10.1016/j.mce.2013.06.018.

    Article  CAS  PubMed  Google Scholar 

  83. Toledo FG, Menshikova EV, Ritov VB, Azuma K, Radikova Z, DeLany J, Kelley DE. Effects of physical activity and weight loss on skeletal muscle mitochondria and relationship with glucose control in type 2 diabetes. Diabetes. 2007;56(8):2142–7. doi:10.2337/db07-0141.

    Article  CAS  PubMed  Google Scholar 

  84. Yang J. Enhanced skeletal muscle for effective glucose homeostasis. Prog Mol Biol Transl Sci. 2014;121:133–63. doi:10.1016/B978-0-12-800101-1.00005-3.

    Article  CAS  PubMed  Google Scholar 

  85. Marotti G, Ferretti M, Muglia MA, Palumbo C, Palazzini S. A quantitative evaluation of osteoblast-osteocyte relationships on growing endosteal surface of rabbit tibiae. Bone. 1992;13(5):363–8.

    Article  CAS  PubMed  Google Scholar 

  86. Urist MR. Bone: formation by autoinduction. Science. 1965;150(3698):893–9.

    Article  CAS  PubMed  Google Scholar 

  87. Klein-Nulend J, Burger EH, Semeins CM, Raisz LG, Pilbeam CC. Pulsating fluid flow stimulates prostaglandin release and inducible prostaglandin G/H synthase mRNA expression in primary mouse bone cells. J Bone Miner Res Off J Am Soc Bone Miner Res. 1997;12(1):45–51. doi:10.1359/jbmr.1997.12.1.45.

    Article  CAS  Google Scholar 

  88. Hartke JR, Lundy MW. Bone anabolic therapy with selective prostaglandin analogs. J Musculoskelet Neuronal Interact. 2001;2(1):25–31.

    CAS  PubMed  Google Scholar 

  89. Mo C, Romero-Suarez S, Bonewald L, Johnson M, Brotto M. Prostaglandin E2: from clinical applications to its potential role in bone- muscle crosstalk and myogenic differentiation. Recent Pat Biotechnol. 2012;6(3):223–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Raisz LG. Prostaglandins and bone: physiology and pathophysiology. Osteoarthritis Cartilage/OARS Osteoarthritis Res Soc. 1999;7(4):419–21. doi:10.1053/joca.1998.0230.

    Article  CAS  Google Scholar 

  91. Yoshida K, Oida H, Kobayashi T, Maruyama T, Tanaka M, Katayama T, Yamaguchi K, Segi E, Tsuboyama T, Matsushita M, Ito K, Ito Y, Sugimoto Y, Ushikubi F, Ohuchida S, Kondo K, Nakamura T, Narumiya S. Stimulation of bone formation and prevention of bone loss by prostaglandin E EP4 receptor activation. Proc Natl Acad Sci U S A. 2002;99(7):4580–5. doi:10.1073/pnas.062053399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, Shpektor D, Jonas M, Kovacevich BR, Staehling-Hampton K, Appleby M, Brunkow ME, Latham JA. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J. 2003;22(23):6267–76. doi:10.1093/emboj/cdg599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, Fukumoto S, Tomizuka K, Yamashita T. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest. 2004;113(4):561–8. doi:10.1172/JCI19081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bonewald LF, Wacker MJ. FGF23 production by osteocytes. Pediatr Nephrol. 2013;28(4):563–8. doi:10.1007/s00467-012-2309-3.

    Article  PubMed  Google Scholar 

  95. Martin A, Liu S, David V, Li H, Karydis A, Feng JQ, Quarles LD. Bone proteins PHEX and DMP1 regulate fibroblastic growth factor Fgf23 expression in osteocytes through a common pathway involving FGF receptor (FGFR) signaling. FASEB J Off Publ Feder Am Soc Exp Biol. 2011;25(8):2551–62. doi:10.1096/fj.10-177816.

    CAS  Google Scholar 

  96. Karsenty G, Wagner EF. Reaching a genetic and molecular understanding of skeletal development. Dev Cell. 2002;2(4):389–406.

    Article  CAS  PubMed  Google Scholar 

  97. Lajeunesse D, Kiebzak GM, Frondoza C, Sacktor B. Regulation of osteocalcin secretion by human primary bone cells and by the human osteosarcoma cell line MG-63. Bone Miner. 1991;14(3):237–50.

    Article  CAS  PubMed  Google Scholar 

  98. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell. 1997;89(5):747–54.

    Article  CAS  PubMed  Google Scholar 

  99. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007;130(3):456–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Nag AC, Foster JD. Myogenesis in adult mammalian skeletal muscle in vitro. J Anat. 1981;132(Pt 1):1–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Shefer G, Van de Mark DP, Richardson JB, Yablonka-Reuveni Z. Satellite-cell pool size does matter: defining the myogenic potency of aging skeletal muscle. Dev Biol. 2006;294(1):50–66. doi:10.1016/j.ydbio.2006.02.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Manring H, Abreu E, Brotto L, Weisleder N, Brotto M. Novel excitation- contraction coupling related genes reveal aspects of muscle weakness beyond atrophy – new hopes for treatment of musculoskeletal diseases. Front Physiol. 2014;5(37).

    Google Scholar 

  103. Pan Z, Brotto M, Ma J. Store-operated Ca2+ entry in muscle physiology and diseases. BMB Rep. 2014;47(2):69–79.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Rios E, Pizarro G, Stefani E. Charge movement and the nature of signal transduction in skeletal muscle excitation-contraction coupling. Annu Rev Physiol. 1992;54:109–33. doi:10.1146/annurev.ph.54.030192.000545.

    Article  CAS  PubMed  Google Scholar 

  105. Goldspink DF, Goldspink G. The role of passive stretch in retarding muscle atrophy. In: Nix WA, Vrbová G, editors. Electrical stimulation and neuromuscular disorders. Berlin Heidelberg: Springer; 1986. p. 91–100. doi:10.1007/978-3-642-71337-8_10.

    Chapter  Google Scholar 

  106. Kurek JB, Bower JJ, Romanella M, Koentgen F, Murphy M, Austin L. The role of leukemia inhibitory factor in skeletal muscle regeneration. Muscle Nerve. 1997;20(7):815–22.

    Article  CAS  PubMed  Google Scholar 

  107. Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev. 2008;88(4):1379–406. doi:10.1152/physrev.90100.2007.

    Article  CAS  PubMed  Google Scholar 

  108. Pedersen BK, Steensberg A, Fischer C, Keller C, Keller P, Plomgaard P, Febbraio M, Saltin B. Searching for the exercise factor: is IL-6 a candidate? J Muscle Res Cell Motil. 2003;24(2–3):113–9.

    Article  CAS  PubMed  Google Scholar 

  109. Li Y, Huard J. Differentiation of muscle-derived cells into myofibroblasts in injured skeletal muscle. Am J Pathol. 2002;161(3):895–907. doi:10.1016/S0002-9440(10)64250-2.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Pedersen L, Olsen CH, Pedersen BK, Hojman P. Muscle-derived expression of the chemokine CXCL1 attenuates diet-induced obesity and improves fatty acid oxidation in the muscle. Am J Physiol Endocrinol Metab. 2012;302(7):E831–40. doi:10.1152/ajpendo.00339.2011.

    Article  CAS  PubMed  Google Scholar 

  111. Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, Scime A, Devarakonda S, Conroe HM, Erdjument-Bromage H, Tempst P, Rudnicki MA, Beier DR, Spiegelman BM. PRDM16 controls a brown fat/skeletal muscle switch. Nature. 2008;454(7207):961–7. doi:10.1038/nature07182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Park KH, Zaichenko L, Brinkoetter M, Thakkar B, Sahin-Efe A, Joung KE, Tsoukas MA, Geladari EV, Huh JY, Dincer F, Davis CR, Crowell JA, Mantzoros CS. Circulating irisin in relation to insulin resistance and the metabolic syndrome. J Clin Endocrinol Metab. 2013;98(12):4899–907. doi:10.1210/jc.2013-2373.

    Article  CAS  PubMed  Google Scholar 

  113. Nielsen AR, Pedersen BK. The biological roles of exercise-induced cytokines: IL-6, IL-8, and IL-15. Appl Physiol Nutr Metab = Physiologie appliquee, nutrition et metabolisme. 2007;32(5):833–9. doi:10.1139/H07-054.

    Article  CAS  PubMed  Google Scholar 

  114. Pedersen BK, Akerstrom TC, Nielsen AR, Fischer CP. Role of myokines in exercise and metabolism. J Appl Physiol. 2007;103(3):1093–8. doi:10.1152/japplphysiol.00080.2007.

    Article  CAS  PubMed  Google Scholar 

  115. Matthews VB, Astrom MB, Chan MH, Bruce CR, Krabbe KS, Prelovsek O, Akerstrom T, Yfanti C, Broholm C, Mortensen OH, Penkowa M, Hojman P, Zankari A, Watt MJ, Bruunsgaard H, Pedersen BK, Febbraio MA. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia. 2009;52(7):1409–18. doi:10.1007/s00125-009-1364-1.

    Article  CAS  PubMed  Google Scholar 

  116. Chan JK, Harry L, Williams G, Nanchahal J. Soft-tissue reconstruction of open fractures of the lower limb: muscle versus fasciocutaneous flaps. Plast Reconstr Surg. 2012;130(2):284e–95. doi:10.1097/PRS.0b013e3182589e63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Joulia-Ekaza D, Cabello G. The myostatin gene: physiology and pharmacological relevance. Curr Opin Pharmacol. 2007;7(3):310–5. doi:10.1016/j.coph.2006.11.011.

    Article  CAS  PubMed  Google Scholar 

  118. Zimmers TA, Davies MV, Koniaris LG, Haynes P, Esquela AF, Tomkinson KN, McPherron AC, Wolfman NM, Lee SJ. Induction of cachexia in mice by systemically administered myostatin. Science. 2002;296(5572):1486–8. doi:10.1126/science.1069525.

    Article  CAS  PubMed  Google Scholar 

  119. Hamrick MW. Increased bone mineral density in the femora of GDF8 knockout mice. The Anatomical Record. 2003;272A(1):388–91. doi:10.1002/ar.a.10044.

    Google Scholar 

  120. Hamrick MW, McPherron AC, Lovejoy CO. Bone mineral content and density in the humerus of adult myostatin-deficient mice. Calcified Tissue International. 2002;71(1):63–8. doi:10.1007/s00223-001-1109-8.

    Google Scholar 

  121. Hamrick MW, Samaddar T, Pennington C, McCormick J. Increased muscle mass with myostatin deficiency improves gains in bone strength with exercise. Journal of Bone and Mineral Research. 2005;21(3):477–83. doi:10.1359/JBMR.051203.

    Google Scholar 

  122. Morissette MR, Stricker JC, Rosenberg MA, Buranasombati C, Levitan EB, Mittleman MA, Rosenzweig A. Effects of myostatin deletion in aging mice. Aging Cell. 2009;8(5):573–83. doi:10.1111/j.1474-9726.2009.00508.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Karsenty G, Ferron M. The contribution of bone to whole-organism physiology. Nature. 2012;481(7381):314–20. doi:10.1038/nature10763.

    Article  CAS  PubMed  Google Scholar 

  124. Morley JE, Baumgartner RN, Roubenoff R, Mayer J, Nair KS. Sarcopenia. J Lab Clin Med. 2001;137(4):231–43. doi:10.1067/mlc.2001.113504.

    Article  CAS  PubMed  Google Scholar 

  125. Karakelides H, Nair KS. Sarcopenia of aging and its metabolic impact. Curr Top Dev Biol. 2005;68:123–48. doi:10.1016/S0070-2153(05)68005-2.

    Article  CAS  PubMed  Google Scholar 

  126. Haber D. Health promotion and aging. 5th ed. New York: Springer Publishing Company; 2013.

    Google Scholar 

  127. Bloom DE, Canning D. Booms, busts, and echoes. International Monetary Fund. 2006. http://www.imf.org/external/pubs/ft/fandd/2006/09/bloom.htm. Accessed 3 43.

  128. Hayutin A, Beals M, Borges E. The aging workforce: a Chartbook of demographic shifts. Stanford center of longevity. 2013. http://longevity3.stanford.edu/wp-content/uploads/2013/09/The_Aging_U.S.-Workforce.pdf.

  129. Muravchick S. Preoperative assessment of the elderly patient. Anesthesiol Clin North America. 2000;18(1):71–89. vi.

    Article  CAS  PubMed  Google Scholar 

  130. Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, Shibuya K, Salomon JA, Abdalla S, Aboyans V, Abraham J, Ackerman I, Aggarwal R, Ahn SY, Ali MK, Alvarado M, Anderson HR, Anderson LM, Andrews KG, Atkinson C, Baddour LM, Bahalim AN, Barker-Collo S, Barrero LH, Bartels DH, Basanez MG, Baxter A, Bell ML, Benjamin EJ, Bennett D, Bernabe E, Bhalla K, Bhandari B, Bikbov B, Bin Abdulhak A, Birbeck G, Black JA, Blencowe H, Blore JD, Blyth F, Bolliger I, Bonaventure A, Boufous S, Bourne R, Boussinesq M, Braithwaite T, Brayne C, Bridgett L, Brooker S, Brooks P, Brugha TS, Bryan-Hancock C, Bucello C, Buchbinder R, Buckle G, Budke CM, Burch M, Burney P, Burstein R, Calabria B, Campbell B, Canter CE, Carabin H, Carapetis J, Carmona L, Cella C, Charlson F, Chen H, Cheng AT, Chou D, Chugh SS, Coffeng LE, Colan SD, Colquhoun S, Colson KE, Condon J, Connor MD, Cooper LT, Corriere M, Cortinovis M, de Vaccaro KC, Couser W, Cowie BC, Criqui MH, Cross M, Dabhadkar KC, Dahiya M, Dahodwala N, Damsere-Derry J, Danaei G, Davis A, De Leo D, Degenhardt L, Dellavalle R, Delossantos A, Denenberg J, Derrett S, Des Jarlais DC, Dharmaratne SD, Dherani M, Diaz-Torne C, Dolk H, Dorsey ER, Driscoll T, Duber H, Ebel B, Edmond K, Elbaz A, Ali SE, Erskine H, Erwin PJ, Espindola P, Ewoigbokhan SE, Farzadfar F, Feigin V, Felson DT, Ferrari A, Ferri CP, Fevre EM, Finucane MM, Flaxman S, Flood L, Foreman K, Forouzanfar MH, Fowkes FG, Franklin R, Fransen M, Freeman MK, Gabbe BJ, Gabriel SE, Gakidou E, Ganatra HA, Garcia B, Gaspari F, Gillum RF, Gmel G, Gosselin R, Grainger R, Groeger J, Guillemin F, Gunnell D, Gupta R, Haagsma J, Hagan H, Halasa YA, Hall W, Haring D, Haro JM, Harrison JE, Havmoeller R, Hay RJ, Higashi H, Hill C, Hoen B, Hoffman H, Hotez PJ, Hoy D, Huang JJ, Ibeanusi SE, Jacobsen KH, James SL, Jarvis D, Jasrasaria R, Jayaraman S, Johns N, Jonas JB, Karthikeyan G, Kassebaum N, Kawakami N, Keren A, Khoo JP, King CH, Knowlton LM, Kobusingye O, Koranteng A, Krishnamurthi R, Lalloo R, Laslett LL, Lathlean T, Leasher JL, Lee YY, Leigh J, Lim SS, Limb E, Lin JK, Lipnick M, Lipshultz SE, Liu W, Loane M, Ohno SL, Lyons R, Ma J, Mabweijano J, MacIntyre MF, Malekzadeh R, Mallinger L, Manivannan S, Marcenes W, March L, Margolis DJ, Marks GB, Marks R, Matsumori A, Matzopoulos R, Mayosi BM, McAnulty JH, McDermott MM, McGill N, McGrath J, Medina-Mora ME, Meltzer M, Mensah GA, Merriman TR, Meyer AC, Miglioli V, Miller M, Miller TR, Mitchell PB, Mocumbi AO, Moffitt TE, Mokdad AA, Monasta L, Montico M, Moradi-Lakeh M, Moran A, Morawska L, Mori R, Murdoch ME, Mwaniki MK, Naidoo K, Nair MN, Naldi L, Narayan KM, Nelson PK, Nelson RG, Nevitt MC, Newton CR, Nolte S, Norman P, Norman R, O’Donnell M, O’Hanlon S, Olives C, Omer SB, Ortblad K, Osborne R, Ozgediz D, Page A, Pahari B, Pandian JD, Rivero AP, Patten SB, Pearce N, Padilla RP, Perez-Ruiz F, Perico N, Pesudovs K, Phillips D, Phillips MR, Pierce K, Pion S, Polanczyk GV, Polinder S, Pope 3rd CA, Popova S, Porrini E, Pourmalek F, Prince M, Pullan RL, Ramaiah KD, Ranganathan D, Razavi H, Regan M, Rehm JT, Rein DB, Remuzzi G, Richardson K, Rivara FP, Roberts T, Robinson C, De Leon FR, Ronfani L, Room R, Rosenfeld LC, Rushton L, Sacco RL, Saha S, Sampson U, Sanchez-Riera L, Sanman E, Schwebel DC, Scott JG, Segui-Gomez M, Shahraz S, Shepard DS, Shin H, Shivakoti R, Singh D, Singh GM, Singh JA, Singleton J, Sleet DA, Sliwa K, Smith E, Smith JL, Stapelberg NJ, Steer A, Steiner T, Stolk WA, Stovner LJ, Sudfeld C, Syed S, Tamburlini G, Tavakkoli M, Taylor HR, Taylor JA, Taylor WJ, Thomas B, Thomson WM, Thurston GD, Tleyjeh IM, Tonelli M, Towbin JA, Truelsen T, Tsilimbaris MK, Ubeda C, Undurraga EA, van der Werf MJ, van Os J, Vavilala MS, Venketasubramanian N, Wang M, Wang W, Watt K, Weatherall DJ, Weinstock MA, Weintraub R, Weisskopf MG, Weissman MM, White RA, Whiteford H, Wiersma ST, Wilkinson JD, Williams HC, Williams SR, Witt E, Wolfe F, Woolf AD, Wulf S, Yeh PH, Zaidi AK, Zheng ZJ, Zonies D, Lopez AD, Murray CJ, AlMazroa MA, Memish ZA. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2163–96. doi:10.1016/S0140-6736(12)61729-2.

    Article  PubMed  Google Scholar 

  131. McLaughlin SJ, Connell CM, Heeringa SG, Li LW, Roberts JS. Successful aging in the United States: prevalence estimates from a national sample of older adults. J Gerontol B Psychol Sci Soc Sci. 2010;65B(2):216–26. doi:10.1093/geronb/gbp101.

    Article  PubMed  Google Scholar 

  132. Wolff JL, Starfield B, Anderson G. Prevalence, expenditures, and complications of multiple chronic conditions in the elderly. Arch Intern Med. 2002;162(20):2269–76.

    Article  PubMed  Google Scholar 

  133. Wu SY, Green A. Projection of chronic illness prevalence and cost inflation. National Centers for Health Statistics. 2000. http://www.nationalhealthcouncil.org.

  134. Rubenstein LZ, Josephson KR. Falls and their prevention in elderly people: what does the evidence show? Med Clin North Am. 2006;90(5):807–24. doi:10.1016/j.mcna.2006.05.013.

    Article  PubMed  Google Scholar 

  135. Auron-Gomez M, Michota F. Medical management of hip fracture. Clin Geriatr Med. 2008;24(4):701–719, ix. doi:10.1016/j.cger.2008.07.002.

    Google Scholar 

  136. Bradley SM. Falls in older adults. Mount Sinai J Med, New York. 2011;78(4):590–595. doi:10.1002/msj.20280.

    Google Scholar 

  137. Scott D, Blizzard L, Fell J, Jones G. The epidemiology of sarcopenia in community living older adults: what role does lifestyle play? J Cachex Sarcopenia Muscle. 2011;2(3):125–34. doi:10.1007/s13539-011-0036-4.

    Article  Google Scholar 

  138. Walsh MC, Hunter GR, Livingstone MB. Sarcopenia in premenopausal and postmenopausal women with osteopenia, osteoporosis and normal bone mineral density. Osteoporos Int J Establ Result Cooper Between Eur Found Osteoporosional Osteoporos Found USA. 2006;17(1):61–7. doi:10.1007/s00198-005-1900-x.

    Article  Google Scholar 

  139. Janssen I, Shepard DS, Katzmarzyk PT, Roubenoff R. The healthcare costs of sarcopenia in the United States. J Am Geriatr Soc. 2004;52(1):80–5.

    Article  PubMed  Google Scholar 

  140. Ray NF, Chan JK, Thamer M, Melton 3rd LJ. Medical expenditures for the treatment of osteoporotic fractures in the United States in 1995: report from the National Osteoporosis Foundation. J Bone Miner Res Off J Am Soc Bone Miner Res. 1997;12(1):24–35. doi:10.1359/jbmr.1997.12.1.24.

    Article  CAS  Google Scholar 

  141. CDC. National Vital Statistics Report. 2013. http://www.cdc.gov/nchs/nvss.htm.

  142. Zaki ME, Hussein FH, Banna RAE-SE. Osteoporosis among ancient Egyptians. Int J Osteoarchaeol. 2009;19(1):78–89. doi:10.1002/oa.978.

    Article  Google Scholar 

  143. Schapira D, Schapira C. Osteoporosis: the evolution of a scientific term. Osteoporos Int J Establ Result Cooper Between Eur Found Osteoporose Natl Osteoporos Found USA. 1992;2(4):164–7.

    Article  CAS  Google Scholar 

  144. WHO. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis, WHO Technical Report Series, No. 843 edn. Geneve: World Health Organization; 1994.

    Google Scholar 

  145. Schwartz AV, Nevitt MC, Brown Jr BW, Kelsey JL. Increased falling as a risk factor for fracture among older women: the study of osteoporotic fractures. Am J Epidemiol. 2005;161(2):180–5. doi:10.1093/aje/kwi023.

    Article  PubMed  Google Scholar 

  146. Taylor BC, Schreiner PJ, Stone KL, Fink HA, Cummings SR, Nevitt MC, Bowman PJ, Ensrud KE. Long-term prediction of incident hip fracture risk in elderly white women: study of osteoporotic fractures. J Am Geriatr Soc. 2004;52(9):1479–86. doi:10.1111/j.1532-5415.2004.52410.x.

    Article  PubMed  Google Scholar 

  147. Vermeer C, Knapen MH, Schurgers LJ. Vitamin K and metabolic bone disease. J Clin Pathol. 1998;51(6):424–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Versluis RG, Papapoulos SE, de Bock GH, Zwinderman AH, Petri H, van de Ven CM, Springer MP. Clinical risk factors as predictors of postmenopausal osteoporosis in general practice. Br J Gen Pract J Royal Coll Gen Pract. 2001;51(471):806–10.

    CAS  Google Scholar 

  149. Body JJ, Bergmann P, Boonen S, Boutsen Y, Bruyere O, Devogelaer JP, Goemaere S, Hollevoet N, Kaufman JM, Milisen K, Rozenberg S, Reginster JY. Non-pharmacological management of osteoporosis: a consensus of the Belgian Bone Club. Osteoporos Int J Establ Result Cooper Between Eur Foundation for Osteoporos Natl Osteoporos Found USA. 2011;22(11):2769–88. doi:10.1007/s00198-011-1545-x.

    Article  Google Scholar 

  150. Rizzoli R, Boonen S, Brandi ML, Burlet N, Delmas P, Reginster JY. The role of calcium and vitamin D in the management of osteoporosis. Bone. 2008;42(2):246–9. doi:10.1016/j.bone.2007.10.005.

    Article  CAS  PubMed  Google Scholar 

  151. Janssen I, Ross R. Linking age-related changes in skeletal muscle mass and composition with metabolism and disease. J Nutr Health Aging. 2005;9(6):408–19.

    CAS  PubMed  Google Scholar 

  152. Rosemberg I. Summary comments: epidemiological and methodological problems in determining nutritional status of older persons. Am J Clin Nutr. 1989;50:1231–3.

    Google Scholar 

  153. Muhlethaler R, Stuck AE, Minder CE, Frey BM. The prognostic significance of protein-energy malnutrition in geriatric patients. Age Ageing. 1995;24(3):193–7.

    Article  CAS  PubMed  Google Scholar 

  154. Prothro JW, Rosenbloom CA. Body measurements of black and white elderly persons with emphasis on body composition. Gerontology. 1995;41(1):22–38.

    Article  CAS  PubMed  Google Scholar 

  155. Janssen I, Heymsfield SB, Ross R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc. 2002;50(5):889–96.

    Article  PubMed  Google Scholar 

  156. Newman AB, Kupelian V, Visser M, Simonsick E, Goodpaster B, Nevitt M, Kritchevsky SB, Tylavsky FA, Rubin SM, Harris TB, Health ABCSI. Sarcopenia: alternative definitions and associations with lower extremity function. J Am Geriatr Soc. 2003;51(11):1602–9.

    Article  PubMed  Google Scholar 

  157. Roubenoff R. Physical activity, inflammation, and muscle loss. Nutr Rev. 2007;65(12):S208–12.

    Article  PubMed  Google Scholar 

  158. Vandervoort AA, Symons TB. Functional and metabolic consequences of sarcopenia. Can J Appl Physiol. 2001;26(1):90–101.

    Article  Google Scholar 

  159. Hughes VA, Frontera WR, Wood M, Evans WJ, Dallal GE, Roubenoff R, Fiatarone Singh MA. Longitudinal muscle strength changes in older adults: influence of muscle mass, physical activity, and health. J Gerontol A Biol Sci Med Sci. 2001;56(5):B209–17.

    Article  CAS  PubMed  Google Scholar 

  160. Mitchell WK, Williams J, Atherton P, Larvin M, Lund J, Narici M. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front Physiol. 2012;3:260. doi:10.3389/fphys.2012.00260.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Goodpaster BH, Park SW, Harris TB, Kritchevsky SB, Nevitt M, Schwartz AV, Simonsick EM, Tylavsky FA, Visser M, Newman AB. The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci. 2006;61(10):1059–64.

    Article  PubMed  Google Scholar 

  162. Lang TF. The bone-muscle relationship in men and women. J Osteoporos. 2011;2011:702735. doi:10.4061/2011/702735.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Wang Q, Alen M, Nicholson P, Suominen H, Koistinen A, Kroger H, Cheng S. Weight-bearing, muscle loading and bone mineral accrual in pubertal girls–a 2-year longitudinal study. Bone. 2007;40(5):1196–202. doi:10.1016/j.bone.2006.12.054.

    Article  PubMed  Google Scholar 

  164. Zanchetta JR, Plotkin H, Alvarez Filgueira ML. Bone mass in children: normative values for the 2–20-year-old population. Bone. 1995;16(4 Suppl):393S–9.

    CAS  PubMed  Google Scholar 

  165. McDonagh MJ, Hayward CM, Davies CT. Isometric training in human elbow flexor muscles. The effects on voluntary and electrically evoked forces. J Bone Joint Surg. 1983;65(3):355–8.

    CAS  Google Scholar 

  166. Baumgartner RN. Body composition in healthy aging. Ann N Y Acad Sci. 2000;904:437–48.

    Article  CAS  PubMed  Google Scholar 

  167. Roubenoff R, Hughes VA. Sarcopenia: current concepts. J Gerontol A Biol Sci Med Sci. 2000;55(12):M716–24.

    Article  CAS  PubMed  Google Scholar 

  168. Roubenoff R. Excess baggage: sarcopenia, obesity, and cancer outcomes. Lancet Oncol. 2008;9(7):605–7. doi:10.1016/S1470-2045(08)70160-8.

    Article  PubMed  Google Scholar 

  169. Schrager MA, Metter EJ, Simonsick E, Ble A, Bandinelli S, Lauretani F, Ferrucci L. Sarcopenic obesity and inflammation in the InCHIANTI study. J Appl Physiol. 2007;102(3):919–25. doi:10.1152/japplphysiol.00627.2006.

    Article  PubMed  Google Scholar 

  170. Baumgartner RN, Wayne SJ, Waters DL, Janssen I, Gallagher D, Morley JE. Sarcopenic obesity predicts instrumental activities of daily living disability in the elderly. Obes Res. 2004;12(12):1995–2004. doi:10.1038/oby.2004.250.

    Article  PubMed  Google Scholar 

  171. Lammes E, Akner G. Resting metabolic rate in elderly nursing home patients with multiple diagnoses. J Nutr Health Aging. 2006;10(4):263–70.

    CAS  PubMed  Google Scholar 

  172. Bouchard DR, Janssen I. Dynapenic-obesity and physical function in older adults. J Gerontol A Biol Sci Med Sci. 2010;65(1):71–7. doi:10.1093/gerona/glp159.

    Article  PubMed  Google Scholar 

  173. Janssen I. Morbidity and mortality risk associated with an overweight BMI in older men and women. Obesity. 2007;15(7):1827–40. doi:10.1038/oby.2007.217.

    Article  PubMed  Google Scholar 

  174. Bouchard DR, Dionne IJ, Brochu M. Sarcopenic/obesity and physical capacity in older men and women: data from the Nutrition as a Determinant of Successful Aging (NuAge)-the Quebec longitudinal Study. Obesity. 2009;17(11):2082–8. doi:10.1038/oby.2009.109.

    Article  PubMed  Google Scholar 

  175. Walrand S, Guillet C, Salles J, Cano N, Boirie Y. Physiopathological mechanism of sarcopenia. Clin Geriatr Med. 2011;27(3):365–85. doi:10.1016/j.cger.2011.03.005.

    Article  PubMed  Google Scholar 

  176. Romero-Suarez S, Shen J, Brotto L, Hall T, Mo C, Valdivia HH, Andresen J, Wacker M, Nosek TM, Qu CK, Brotto M. Muscle-specific inositide phosphatase (MIP/MTMR14) is reduced with age and its loss accelerates skeletal muscle aging process by altering calcium homeostasis. Aging. 2010;2(8):504–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Srikanthan P, Hevener AL, Karlamangla AS. Sarcopenia exacerbates obesity-associated insulin resistance and dysglycemia: findings from the National Health and Nutrition Examination Survey III. PLoS One. 2010;5(5):e10805. doi:10.1371/journal.pone.0010805.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Kim TN, Park MS, Yang SJ, Yoo HJ, Kang HJ, Song W, Seo JA, Kim SG, Kim NH, Baik SH, Choi DS, Choi KM. Prevalence and determinant factors of sarcopenia in patients with type 2 diabetes: the Korean Sarcopenic Obesity Study (KSOS). Diabetes Care. 2010;33(7):1497–9. doi:10.2337/dc09-2310.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Magkos F, Wang X, Mittendorfer B. Metabolic actions of insulin in men and women. Nutrition. 2010;26(7–8):686–93. doi:10.1016/j.nut.2009.10.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Lee CG, Boyko EJ, Strotmeyer ES, Lewis CE, Cawthon PM, Hoffman AR, Everson-Rose SA, Barrett-Connor E, Orwoll ES, Osteoporotic Fractures in Men Study Research G. Association between insulin resistance and lean mass loss and fat mass gain in older men without diabetes mellitus. J Am Geriatr Soc. 2011;59(7):1217–24. doi:10.1111/j.1532-5415.2011.03472.x.

    Article  Google Scholar 

  181. Hofbauer LC, Brueck CC, Singh SK, Dobnig H. Osteoporosis in patients with diabetes mellitus. J Bone Miner Res Off J Am Soc Bone Miner Res. 2007;22(9):1317–28. doi:10.1359/jbmr.070510.

    Article  CAS  Google Scholar 

  182. Isaacson J, Brotto M. Physiology of Mechanotransduction: How Do Muscle and Bone “Talk” to One Another? Clinical Reviews in Bone and Mineral Metabolism. 2014;12(2):77–85.

    Article  PubMed  Google Scholar 

  183. Schweitzer R, Zelzer E, Volk T. Connecting muscles to tendons: tendons and musculoskeletal development in flies and vertebrates. Development. 2010;137(17):2807–17. doi:10.1242/dev.047498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Pineault KM, Wellik DM. Hox genes and limb musculoskeletal development. Curr Osteoporos Rep. 2014;12(4):420–7. doi:10.1007/s11914-014-0241-0.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Blitz E, Viukov S, Sharir A, Shwartz Y, Galloway JL, Pryce BA, Johnson RL, Tabin CJ, Schweitzer R, Zelzer E. Bone ridge patterning during musculoskeletal assembly is mediated through SCX regulation of Bmp4 at the tendon-skeleton junction. Dev Cell. 2009;17(6):861–73. doi:10.1016/j.devcel.2009.10.010.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Edom-Vovard F, Duprez D. Signals regulating tendon formation during chick embryonic development. Dev Dyn Off Publ Am Assoc Anat. 2004;229(3):449–57. doi:10.1002/dvdy.10481.

    CAS  Google Scholar 

  187. Edom-Vovard F, Schuler B, Bonnin MA, Teillet MA, Duprez D. Fgf4 positively regulates scleraxis and tenascin expression in chick limb tendons. Dev Biol. 2002;247(2):351–66.

    Article  CAS  PubMed  Google Scholar 

  188. Rodriguez-Guzman M, Montero JA, Santesteban E, Ganan Y, Macias D, Hurle JM. Tendon-muscle crosstalk controls muscle bellies morphogenesis, which is mediated by cell death and retinoic acid signaling. Dev Biol. 2007;302(1):267–80. doi:10.1016/j.ydbio.2006.09.034.

    Article  CAS  PubMed  Google Scholar 

  189. Findlay DM, Atkins GJ. Osteoblast-chondrocyte interactions in osteoarthritis. Curr Osteoporos Rep. 2014;12(1):127–34. doi:10.1007/s11914-014-0192-5.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Funck-Brentano T, Cohen-Solal M. Crosstalk between cartilage and bone: when bone cytokines matter. Cytokine Growth Factor Rev. 2011;22(2):91–7. doi:10.1016/j.cytogfr.2011.04.003.

    Article  CAS  PubMed  Google Scholar 

  191. Pan J, Zhou X, Li W, Novotny JE, Doty SB, Wang L. In situ measurement of transport between subchondral bone and articular cartilage. J Orthop Res Off Publ Orthop Res Soc. 2009;27(10):1347–52. doi:10.1002/jor.20883.

    Article  Google Scholar 

  192. Yuan XL, Meng HY, Wang YC, Peng J, Guo QY, Wang AY, Lu SB. Bone-cartilage interface crosstalk in osteoarthritis: potential pathways and future therapeutic strategies. Osteoarthritis Cartilage/OARS Osteoarthritis Res Soc. 2014;22(8):1077–89. doi:10.1016/j.joca.2014.05.023.

    Article  CAS  Google Scholar 

  193. Tat SK, Lajeunesse D, Pelletier J-P, Martel-Pelletier J. Targeting subchondral bone for treating osteoarthritis: what is the evidence? Best Pract Res Clin Rheumatol. 2010;24:51–70.

    Google Scholar 

  194. Loppini M, Maffulli N. Conservative management of tendinopathy: an evidence-based approach. Muscles Ligaments Tendons J. 2011;1(4):134–7.

    PubMed  Google Scholar 

  195. Heinemeier KM, Olesen JL, Haddad F, Langberg H, Kjaer M, Baldwin KM, Schjerling P. Expression of collagen and related growth factors in rat tendon and skeletal muscle in response to specific contraction types. J Physiol. 2007;582(Pt 3):1303–16. doi:10.1113/jphysiol.2007.127639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Rizzuto E, Musaro A, Catizone A, Del Prete Z. Measuring tendon properties in mdx mice: cell viability and viscoelastic characteristics. J Biomech. 2009;42(14):2243–8. doi:10.1016/j.jbiomech.2009.06.041.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Brotto BSN, MS, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brotto, M., Isaacson, J., Abreu, E.L. (2016). The Muscle-Bone Connection. In: Duque, G., Kiel, D. (eds) Osteoporosis in Older Persons. Springer, Cham. https://doi.org/10.1007/978-3-319-25976-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25976-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25974-1

  • Online ISBN: 978-3-319-25976-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics