Skip to main content

Numerical Simulation of Super-Detonative Ram Accelerator; Its Shock-Induced Combustion and Oblique Detonation

  • Chapter
  • First Online:
Hypervelocity Launchers

Part of the book series: Shock Wave Science and Technology Reference Library ((SHOCKWAVES,volume 10))

Abstract

Hypersonic propulsion has been subjected to an intense research for the future propulsion. Various techniques have been proposed to replace the existing techniques. Most of them are chemical propulsion system, in which combustion plays a vital role in heat addition and its conversion to kinetic energy. The Ram Accelerator [1, 2], (referred to as RamAc), a ramjet-in-tube concept, is a propulsion concept based on using the Shock-Induced Combustion (SIC) to accelerate the projectile to a very high velocity. In a Ram accelerator, a projectile travels at supersonic speed in a launch tube, filled with a premixed fuel-oxidizer mixture

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Overdrive factor—ratio of projectile velocity to that of the C-J detonation velocity: the velocity at which the detonation propagates at the same velocity at which the reacting gas reaches sonic velocity as the reaction ceases.

  2. 2.

    xp—Distance traveled by the projectile in laboratory frame.

  3. 3.

    Thrust Coefficient is defined here as the ration of the thrust acting on the body and the initial pressure on the projectile cross section.

  4. 4.

    French-German Research Institute of Saint Louis, France.

  5. 5.

    More detailed discussion on the effect of Damköhler number (Da1) and Heat Release parameter are discussed by Choi et al. in Ref. [22].

  6. 6.

    ZND—the flow in which a high speed flow causes a thin reactionless shock wave followed by the reaction zone because of high temperature and aerodynamic compression of the mixture.

Abbreviations

HR:

Heat Release Parameter

ID:

Induction Distance

ODW:

Oblique Detonation Wave

OSW:

Oblique Shock Wave

NDW:

Normal Detonation Wave

SCRamAc:

Super detonative Combustion Ram Accelerator

SBLI:

Shock Boundary Layer Interaction

SCRamAc:

Super detonative Combustion Ram Accelerator

SD:

Shock Standoff Distance

SIC:

Shock-Induced Combustion

TC:

Thrust Coefficient

ZND:

Zeldovich, von Neumann and Döring Model

References

  1. Hertzberg, A., Bruckner, A.P., Bogdanoff, D.W.: Ram accelerator: a new chemical method for accelerating projectiles to ultrahigh velocities. AIAA J. 26(2), 195–203 (1988)

    Article  Google Scholar 

  2. Bogdanoff, D.W.: Ram accelerator direct space launch system: new concepts. J. Propul. Power 8(2), 481–490 (1992)

    Article  Google Scholar 

  3. Choi, J.-Y., Jeung, I.-S., Yoon, Y.: Computational fluid dynamics algorithms for unsteady shock-induced combustion, part 1: validation. AIAA J. 38(7), 1179–1187 (2000)

    Article  Google Scholar 

  4. Choi, J.-Y., Jeung, I.-S., Yoon, Y.: Computational fluid dynamics algorithms for unsteady shock-induced combustion, part 2: comparison. AIAA J. 38(7), 1188–1195 (2000)

    Article  Google Scholar 

  5. Choi, J.-Y., Jeung, I.-S., Yoon, Y.: Numerical study of scram accelerator starting characteristics. AIAA J. 36(6), 1029–1038 (1998)

    Article  Google Scholar 

  6. Lehr, H.F.: Experiments on shock-induced combustion. Astronaut. Acta 17(4, 5), 589–597 (1972)

    Google Scholar 

  7. Jachimowski, C.J.: An analytical study of the hydrogen-air reaction mechanism with application to scramjet combustion. NASA TP-2791 (1988)

    Google Scholar 

  8. Yungster, S., Radhakrishnan, K.: A fully implicit time accurate method for hypersonic combustion: application to shock-induced combustion instability. AIAA Pap. 94–2965 (1994)

    Google Scholar 

  9. Matsuo, A., Fujiwara, T.: Numerical simulation of shock-induced combustion around an axisymmetric blunt body. In: AIAA Paper 91–1414, AIAA 26th Thermophysics Conference, Honolulu (1991)

    Google Scholar 

  10. Wilson, G.J., Sussman, M.A.: Computation of unsteady shock-induced combustion using logarithmic species conservation equations. AIAA J. 31(2), 294–301 (1993)

    Google Scholar 

  11. Hosangadi, A., York, B.J., Sinha, N., Dash, S.M.: Progress in transient interia ballistic flowfield simulation using multi-dimensional upwind/implicit numerics. AIAA Pap. 93–1915 (1993)

    Google Scholar 

  12. Morris, C.I., Kamel, M.R., Hanson, R.K.: Expansion tube investigation of Ram-accelerator projectile flow fields. AIAA 1996–2680

    Google Scholar 

  13. Choi, J.-Y., Jeung, I.-S., Yoon, Y.: Unsteady-state simulation of model Ram accelerator in expansion tube. AIAA J. 37(5), 537–543 (1999)

    Article  Google Scholar 

  14. Choi, J.-Y., Jeung, I.-S., Yoon, Y.: Transient simulation of the superdetonative mode initiation process in SCRam accelerator. In: Proceedings of the Combustion Institute, vol. 26, pp. 2957–2963 (1996)

    Google Scholar 

  15. Trimpi, R.L.: A preliminary theoretical study of expansion tube, a new device for producing high-enthalpy short duration hypersonic gas flows. NASA TR-R-133 (1962)

    Google Scholar 

  16. Seiler, F., Patz, G., Smeets, G., Srulijes, J.: The rail tube in a Ram acceleration: feasibility study with ISL’s RAMAC 30. In: Second International Workshop on Ram Accelerators, RAMAC II, Seattle, WA, July 1995; also Inst. of Saint-Louis, ISL Rept. PU366/95, St. Louis, France, 1995

    Google Scholar 

  17. Choi, J.-Y., Lee, B.J., Jeung, I.-S., Yoon, Y.: Computational investigation of high pressure combustion mechanism in scram accelerator. J. Phys. IV 10(11), 131–142 (2000)

    Google Scholar 

  18. Moon, G.-W., Jeung, I.-S., Choi, J.-Y., Seiler, F., Patz, G., Smeets, G., Srulijes, J.: Numerical modelling and simulation of RAMAC 30 experiment carried out at the French-German research institute of Saint—Louis. J. Phys. IV 10, 143–153 (2000)

    Google Scholar 

  19. Yungster, S.: Numerical study of shock-wave/boundary-layer interactions in premixed combustible gases. AIAA J. 30(10), 2379–2387 (1992)

    Article  Google Scholar 

  20. Nusca, M.J., Kruczynski, D.L.: Reacting flow simulation for a large-scale Ram accelerator. J. Propul. Power 12(1), 61–69 (1996)

    Article  Google Scholar 

  21. Choi, J.-Y., Jeung, I.-S., Yoon, Y.: Scaling effect of the combustion induced by shock-wave boundary-layer interaction in premixed gas. Proc. Combust. Inst. 27, 2181–2188 (1998)

    Article  Google Scholar 

  22. Choi, J.-Y., Jeung, I.-S., Lee, S.: Dimensional analysis of the effect of flow conditions on shock-induced combustion. Proc. Combust. Inst. 26, 2925–2935 (1996)

    Article  Google Scholar 

  23. Pratt, D.T., Humphrey, J.W., Glenn, D.E.: Morphology of standing oblique detonation waves. J. Propul. Power 7(5), 837–845 (1991)

    Article  Google Scholar 

  24. Shepherd, J.E.: In: Buckmaster, J., Jackson, T.L., Kumar, A. (eds.) Detonation Waves and Propulsion, pp. 373–420. Combustion in High-Speed Flows, Kluwer Academic Pub, Dordrecht (1994)

    Google Scholar 

  25. Viguier, C., Gourara, A., Desbordes, D., Deshaies, B.: Three dimensional structure of stabilization of oblique detonation wave in a hypersonic flow. Proc. Combust. Inst. 27, 2207–2214 (1998)

    Article  Google Scholar 

  26. Kaneshige, M.J., Shepherd, J.E.: Oblique detonations stabilized on a hypervelocity projectile. Proc. Combust. Inst. 26, 3015–3022 (1996)

    Article  Google Scholar 

  27. Kasahara, J., Fujiwara, T., Endo, T., Arai, T.: Chapman–Jouguet oblique detonation structure around hypersonic projectiles. AIAA J. 39(8), 1553–1561 (2001)

    Article  Google Scholar 

  28. Morris, C.I., Kamel, M.R., Hanson, R.K.: Shock-induced combustion in high-speed wedge flows. Proc. Combust. Inst. 27, 2157–2164 (1998)

    Article  Google Scholar 

  29. Li, C., Kailasanath, K., Oran, E.S.: Detonation structures behind oblique shocks. Phys. Fluids 6(4), 1600–1611 (1994)

    Article  Google Scholar 

  30. Fusina, G., Sislian, JP., Parent, B.: Formation and stability of near Chapman-Jouguet standing oblique detonation waves. AIAA J. 43(7), 1591–1604 (2005)

    Google Scholar 

  31. Choi, J.-Y., Kim, D.-W., Jeung, I.-S., Ma, F., Yang, V.: Cell-like structure of unstable oblique detonation wave from high-resolution numerical simulation. Proc. Combust. Inst. 31, 2473–2480 (2007)

    Article  Google Scholar 

  32. Choi, J.-Y., Ma, F., Yang, V.: Some numerical issues on simulation of detonation cell structures. Combust. Explos. Shock Waves 44(5), 560–578 (2008)

    Article  Google Scholar 

  33. Choi, J.-Y., Shin, E.J.-R., Jeung, I.-S.: Unstable combustion induced by oblique shock wave at non-attaching condition of oblique detonation wave., Proc. Combust. Inst. 32, 2387–2396 (2009) (See also, Proc. 22nd Int. Symp. Shock Waves, 1999, pp.333-337 (ISBN 085432-706-1))

    Google Scholar 

Download references

Acknowledgements

Authors appreciate greatly P. Pradeep Kumar for editing the manuscript with great care. Authors also thank to F. Seiler and O. Igra and for suggesting this great opportunity, reading the manuscript and giving corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Yeol Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Choi, JY., Jeung, IS. (2016). Numerical Simulation of Super-Detonative Ram Accelerator; Its Shock-Induced Combustion and Oblique Detonation. In: Seiler, F., Igra, O. (eds) Hypervelocity Launchers. Shock Wave Science and Technology Reference Library, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-319-26018-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26018-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26016-7

  • Online ISBN: 978-3-319-26018-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics