Skip to main content

Embryological Basis of Congenital Tumours

  • Chapter
  • First Online:
Clinical Embryology

Abstract

During normal cellular development, there is a complex system of checks and balances to ensure regulation of the cells as they proliferate and specialize to perform their physiological functions. Various genes cooperate, concomitantly and/or sequentially with others, to activate and direct the developmental mechanisms in a developing foetus. After their target is achieved, these pathways are either kept dormant or are used elsewhere in a different context (growth, repair, etc.). Reactivation of these genes, by various mutations and/or carcinogens, can reinstate these developmental pathways. If these pathways remain active incessantly and do not obey the normal regulatory mechanisms, cell proliferation becomes independent of the growth stimulus, and this produces a mass—cancer [1–3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cofre J, Abdelhay E. Cancer is to embryology as mutation is to genetics: hypothesis of the cancer as embryological phenomenon. Sci World J. 2017;2017:3578090.

    Article  Google Scholar 

  2. Kelleher FC, Fennelly D, Rafferty M. Common critical pathways in embryogenesis and cancer. Acta Oncol. 2006;45(4):375–88.

    Article  CAS  Google Scholar 

  3. Ma Y, Zhang P, Wang F, Yang J, Yang Z, Qin H. The relationship between early embryo development and tumourigenesis. J Cell Mol Med. 2010;14(12):2697–701.

    Article  Google Scholar 

  4. Jiang M, Stanke J, Lahti JM. The connections between neural crest development and neuroblastoma. Curr Top Dev Biol. 2011;94:77–127.

    Article  CAS  Google Scholar 

  5. Kumar V, Abbas AK, Aster JC. Neoplasia. In: Kumar V, Abbas AK, Aster JC, editors. Robbins basic pathology. 9th ed. Philadelphia: Elsevier; 2013. p. 161–214.

    Google Scholar 

  6. Carachi R, Grosfeld JL. The surgery of childhood tumors. 3rd ed. Berlin Heidelberg: Springer-Verlag; 2016.

    Book  Google Scholar 

  7. Gilbert-Barness E. Pathology of the fetus, infant and child. 2nd ed. Mosby Elsevier, 2007.

    Google Scholar 

  8. Hohenstein P, Pritchard-Jones K, Charlton J. The yin and yang of kidney development and Wilms’ tumors. Genes Dev. 2015;29(5):467–82.

    Article  CAS  Google Scholar 

  9. Vujanić GM, Sandstedt B. The pathology of Wilms’ tumour (nephroblastoma): the International Society of Paediatric Oncology approach. J Clin Pathol. 2010;63(2):102–9.

    Article  Google Scholar 

  10. Sheikine Y, Genega E, Melamed J, Lee P, Reuter VE, Ye H. Molecular genetics of testicular germ cell tumors. Am J Cancer Res. 2012;2(2):153–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lip SZ, Murchison LE, Cullis PS, Govan L, Carachi R. A meta-analysis of the risk of boys with isolated cryptorchidism developing testicular cancer in later life. Arch Dis Child. 2013;98(1):20–6.

    Article  Google Scholar 

  12. Huang M, Weiss WA. Neuroblastoma and MYCN. Cold Spring Harb Perspect Med. 2013;3(10):a014415.

    Article  Google Scholar 

  13. Han ZG. Mutational landscape of hepatoblastoma goes beyond the Wnt-β-catenin pathway. Hepatology. 2014;60(5):1476–8.

    Article  CAS  Google Scholar 

  14. Krawczuk-Rybak M, Jakubiuk-Tomaszuk A, Skiba E, Plawski A. Hepatoblastoma as a result of APC gene mutation. J Pediatr Gastroenterol Nutr. 2012;55(3):334–6.

    Article  Google Scholar 

  15. Parham DM, Barr FG. Classification of rhabdomyosarcoma and its molecular basis. Adv Anat Pathol. 2013;20(6):387–97.

    Article  CAS  Google Scholar 

  16. Rudzinski ER. Histology and fusion status in rhabdomyosarcoma. Am Soc Clin Oncol Educ Book. 2013:425–8.

    Article  Google Scholar 

  17. Wachtel M, Runge T, Leuschner I, Stegmaier S, Koscielniak E, Treuner J, Odermatt B, Behnke S, Niggli FK, Schäfer BW. Subtype and prognostic classification of rhabdomyosarcoma by immunohistochemistry. J Clin Oncol. 2006;24(5):816–22.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hammond, P., Annavarapu, S. (2019). Embryological Basis of Congenital Tumours. In: Carachi, R., Doss, S. (eds) Clinical Embryology. Springer, Cham. https://doi.org/10.1007/978-3-319-26158-4_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26158-4_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26156-0

  • Online ISBN: 978-3-319-26158-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics