Skip to main content

Practical Pharmacology of Rivastigmine

  • Chapter
  • First Online:
Practical Pharmacology for Alzheimer’s Disease

Abstract

Alzheimer’s disease is the most prevalent worldwide neurodegenerative disease (Fargo 2014). It is characterized by a progressive cognitive impairment and behavioral disturbances, which lead to functional impairment (Cummings and Cole 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alva G, Grossberg GT, Schmitt FA, Meng X, Olin JT (2011) Efficacy of rivastigmine transdermal patch on activities of daily living: Item responder analyses. Int J Geriatr Psychiatry 26(4):356–363

    Article  PubMed  Google Scholar 

  • Alvarez A, Alarcón R, Opazo C, Campos EO, Muñoz FJ, Calderón FH et al (1998) Stable complexes involving acetylcholinesterase and amyloid-beta peptide change the biochemical properties of the enzyme and increase the neurotoxicity of Alzheimer’s fibrils. J Neurosci 18(9):3213–3223

    CAS  PubMed  Google Scholar 

  • Alzheimer’s Association (2015) Alzheimer’s disease facts and figures. Alzheimers Dement 11(3):332–84

    Google Scholar 

  • Annicchiarico R, Federici A, Pettenati C, Caltagirone C (2007) Rivastigmine in Alzheimer’s disease: cognitive function and quality of life. Ther Clin Risk Manag 3(6):1113–1123

    PubMed Central  CAS  PubMed  Google Scholar 

  • Arciniegas DB (2003) The cholinergic hypothesis of cognitive impairment caused by traumatic brain injury. Curr Psychiatry Rep 5(5):391–399

    Article  PubMed  Google Scholar 

  • Arendt T (1999) Pathological anatomy of Alzheimer’s disease (Germ). In: Forstl H, Bickel H, Kurz A (eds) Alzheimer Demenz, Grundlagen Klinik und Therapie. Springer, Berlin/Heidelberg/New York, pp 87–106

    Google Scholar 

  • Auld DS, Kornecook TJ, Bastianetto S, Quirion R (2002) Alzheimer’s disease and the basal forebrain cholinergic system: relations to beta-amyloid peptides, cognition, and treatment strategies. Prog Neurobiol 68(3):209–245

    Article  CAS  PubMed  Google Scholar 

  • Bartus RT, Dean RL, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217(4558):408–414

    Article  CAS  PubMed  Google Scholar 

  • Battaglia M (2002) Beyond the usual suspects: a cholinergic route for panic attacks. Mol Psychiatry 7(3):239–246

    Article  CAS  PubMed  Google Scholar 

  • Bentivoglio MS (1990) Brainstem-diencephalic circuits as a structural substrate of ascending reticular activation concept. In: Mancia M, Marini M (eds) The diencephalon and sleep. Raven Press, New York, pp 7–29

    Google Scholar 

  • Benzi G, Moretti A (1998) Is there a rationale for the use of acetylcholinesterase inhibitors in the therapy of Alzheimer’s disease? Eur J Pharmacol 346(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Berger-Sweeney J (2003) The cholinergic basal forebrain system during development and its influence on cognitive processes: Important questions and potential answers. Neurosci Biobehav Rev 27(4):401–411

    Article  CAS  PubMed  Google Scholar 

  • Bierer LM, Haroutunian V, Gabriel S, Knott PJ, Carlin LS, Purohit DP et al (1995) Neurochemical correlates of dementia severity in Alzheimer’s disease: relative importance of the cholinergic deficits. J Neurochem 64(2):749–760

    Article  CAS  PubMed  Google Scholar 

  • Bigl V, Arendt T, Biesold D (1990) The nucleus basalis of Meynert during aging and in dementing neuropsychiatric disorders. In: Steriade M, Biesold D (eds) Brain cholinergic systems. Oxford University Press, Oxford, pp 364–386

    Google Scholar 

  • Birks J (2006) Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev 1:CD005593

    PubMed  Google Scholar 

  • Birks JS, Grimley Evans J (2015) Rivastigmine for Alzheimer’s disease. Cochrane Database Syst Rev 4:CD001191. doi: 10.1002/14651858.CD001191.pub3. Review. PubMed PMID: 25858345

  • Blesa R, Ballard C, Orgogozo JM, Lane R, Thomas SK (2007) Caregiver preference for rivastigmine patches versus capsules for the treatment of Alzheimer disease. Neurology 69(4 Suppl 1):S23–S28

    Article  CAS  PubMed  Google Scholar 

  • Bornstein RA (1985) Normative data on selected neuropsychological measures from a nonclinical sample. J Clin Psychol 41(5):651–659

    Article  Google Scholar 

  • Bowen DM, Smith CB, White P, Davison AN (1976) Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain 99(3):459–496

    Article  CAS  PubMed  Google Scholar 

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82(4):239–259

    Article  CAS  PubMed  Google Scholar 

  • Brankačk J, Platt B, Riedel G (2009) Sleep and hippocampus: do we search for the right things? Prog Neuropsychopharmacol Biol Psychiatry 33(5):806–812

    Article  PubMed  Google Scholar 

  • Brun A, Gustafson L (1976) Distribution of cerebral degeneration in Alzheimer’s disease. A clinico-pathological study. Arch Psychiatr Nervenkr 223(1):15–33

    Google Scholar 

  • Bullock R, Touchon J, Bergman H, Gambina G, He Y, Rapatz G et al (2005) Rivastigmine and donepezil treatment in moderate to moderately-severe Alzheimer’s disease over a 2-year period. Curr Med Res Opin 21(8):1317–1327

    Article  CAS  PubMed  Google Scholar 

  • Bürger S, Noack M, Kirazov LP, Kirazov EP, Naydenov CL, Kouznetsova E et al (2009) Vascular endothelial growth factor (VEGF) affects processing of amyloid precursor protein and beta-amyloidogenesis in brain slice cultures derived from transgenic Tg2576 mouse brain. Int J Dev Neurosci 27(6):517–523

    Article  PubMed  CAS  Google Scholar 

  • Burghaus L, Schütz U, Krempel U, de Vos RA, Jansen Steur EN, Wevers A et al (2000) Quantitative assessment of nicotinic acetylcholine receptor proteins in the cerebral cortex of Alzheimer patients. Brain Res Mol Brain Res 76(2):385–388

    Article  CAS  PubMed  Google Scholar 

  • Burke SN, Barnes CA (2006) Neural plasticity in the ageing brain. Nat Rev Neurosci 7(1):30–40

    Article  CAS  PubMed  Google Scholar 

  • Burns A, Rossor M, Hecker J, Gauthier S, Petit H, Möller HJ et al (1999) The effects of donepezil in Alzheimer’s disease – results from a multinational trial. Dement Geriatr Cogn Disord 10(3):237–244

    Article  CAS  PubMed  Google Scholar 

  • Caccamo A, Fisher A, LaFerla FM (2009) M1 agonists as a potential disease-modifying therapy for Alzheimer’s disease. Curr Alzheimer Res 6(2):112–117

    Article  CAS  PubMed  Google Scholar 

  • Cagnin A, Cester A, Costa B, Ermani M, Gabelli C, Gambina G (2014) Effectiveness of switching to the rivastigmine transdermal patch from oral cholinesterase inhibitors: a naturalistic prospective study in Alzheimer’s disease. Neurol Sci 36(3):457–463

    Article  PubMed  Google Scholar 

  • Chez MG, Aimonovitch M, Buchanan T, Mrazek S, Tremb RJ (2004) Treating autistic spectrum disorders in children: utility of the cholinesterase inhibitor rivastigmine tartrate. J Child Neurol 19(3):165–169

    PubMed  Google Scholar 

  • Cleary JP, Walsh DM, Hofmeister JJ, Shankar GM, Kuskowski MA, Selkoe DJ et al (2005) Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat Neurosci 8(1):79–84

    Article  CAS  PubMed  Google Scholar 

  • Coleman M (2005) Axon degeneration mechanisms: commonality amid diversity. Nat Rev Neurosci 6(11):889–898

    Article  CAS  PubMed  Google Scholar 

  • Contestabile A (2011) The history of the cholinergic hypothesis. Behav Brain Res 221(2):334–340

    Article  CAS  PubMed  Google Scholar 

  • Cooke JR, Loredo JS, Liu L, Marler M, Corey-Bloom J, Fiorentino L et al (2006) Acetylcholinesterase inhibitors and sleep architecture in patients with Alzheimer’s disease. Drugs Aging 23(6):503–511

    Article  CAS  PubMed  Google Scholar 

  • Cooper JD, Lindholm D, Sofroniew MV (1994) Reduced transport of [125I]nerve growth factor by cholinergic neurons and down-regulated TrkA expression in the medial septum of aged rats. Neuroscience 62(3):625–629

    Article  CAS  PubMed  Google Scholar 

  • Craig LA, Hong NS, McDonald RJ (2011) Revisiting the cholinergic hypothesis in the development of Alzheimer’s disease. Neurosci Biobehav Rev 35(6):1397–1409

    Article  CAS  PubMed  Google Scholar 

  • Cuello AC, Bruno MA, Bell KFS (2007) NGF-cholinergic dependency in brain aging, MCI and Alzheimer’s disease. Curr Alzheimer Res 4(4):351–358

    Article  CAS  PubMed  Google Scholar 

  • Cummings JL, Cole G (2002) Alzheimer disease. JAMA 287:2335–2338

    Article  CAS  PubMed  Google Scholar 

  • Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J (1994) The neuropsychiatric inventory: comprehensive assessment of psychopathology in dementia. Neurology 44(12):2308–2314

    Article  CAS  PubMed  Google Scholar 

  • Cummings JL, Farlow MR, Meng X, Tekin S, Olin JT (2010a) Rivastigmine transdermal patch skin tolerability: results of a 1-year clinical trial in patients with mild-to-moderate Alzheimers disease. Clin Drug Investig 30(1):41–49

    Article  CAS  PubMed  Google Scholar 

  • Cummings JL, Ferris SH, Farlow MR, Olin JT, Meng X (2010b) Effects of rivastigmine transdermal patch and capsule on aspects of clinical global impression of change in Alzheimer’s disease: a retrospective analysis. Dement Geriatr Cogn Disord 29(5):406–412

    Article  CAS  PubMed  Google Scholar 

  • Cummings J, Froelich L, Black SE, Bakchine S, Bellelli G, Molinuevo JL et al (2012) Randomized, double-blind, parallel-group, 48-week study for efficacy and safety of a higher-dose rivastigmine patch (15 vs. 10 cm) in Alzheimer’s disease. Dement Geriatr Cogn Disord 33(5):341–353

    Article  CAS  PubMed  Google Scholar 

  • Cummings JL, Isaacson RS, Schmitt FA, Velting DM (2015) A practical algorithm for managing Alzheimer’s disease: what, when, and why? Ann Clin Transl Neurol 2(3):307–323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Damasio AR, Graff-Radford NR, Eslinger PJ, Damasio H, Kassell N (1985) Amnesia following basal forebrain lesions. Arch Neurol 42(3):263–271

    Article  CAS  PubMed  Google Scholar 

  • Darvesh S, Walsh R, Kumar R, Caines A, Roberts S, Magee D et al (2003) Inhibition of human cholinesterases by drugs used to treat Alzheimer disease. Alzheimer Dis Assoc Disord 17(2):117–126

    Google Scholar 

  • Davies P, Maloney A (1976) Selective loss of central cholinergic neurones in Alzheimer’s disease. Lancet 2:1403

    Article  CAS  PubMed  Google Scholar 

  • Davis KL, Mohs RC, Marin D, Purohit DP, Perl DP, Lantz M et al (1999) Cholinergic markers in elderly patients with early signs of Alzheimer disease. JAMA 281(15):1401–1406

    Google Scholar 

  • De Lacalle S, Cooper JD, Svendsen CN, Dunnett SB, Sofroniew MV (1996) Reduced retrograde labelling with fluorescent tracer accompanies neuronal atrophy of basal forebrain cholinergic neurons in aged rats. Neuroscience 75(1):19–27

    Article  PubMed  Google Scholar 

  • Decker MW, McGaugh JL (1991) The role of interactions between the cholinergic system and other neuromodulatory systems in learning and memory. Synapse 7(2):151–168

    Article  CAS  PubMed  Google Scholar 

  • DeJong R, Osterlund OW, Roy GW (1989) Measurement of quality-of-life changes in patients with Alzheimer’s disease. Clin Ther 11(4):545–554

    Google Scholar 

  • DeKosky ST, Ikonomovic MD, Styren SD, Beckett L, Wisniewski S, Bennett DA et al (2002) Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol 51(0364–5134):145–155

    Article  CAS  PubMed  Google Scholar 

  • Deutsch JA (1971) The cholinergic synapse and the site of memory. Science 174(11):788–794

    Article  CAS  PubMed  Google Scholar 

  • Dhillon S (2011) Rivastigmine transdermal patch. Drugs 71(9):1209–1231

    Article  CAS  PubMed  Google Scholar 

  • Dickinson-Anson H, Aubert I, Gage FH, Fisher LJ (1998) Hippocampal grafts of acetylcholine-producing cells are sufficient to improve behavioural performance following a unilateral fimbria-fornix lesion. Neuroscience 84(3):771–781

    Article  CAS  PubMed  Google Scholar 

  • Dilsaver SC, Coffman JA (1989) Cholinergic hypothesis of depression: a reappraisal. J Clin Psychopharmacol 9(3):173–179

    Article  CAS  PubMed  Google Scholar 

  • Dineley KT, Bell KA, Bui D, Sweatt JD (2002) beta -Amyloid peptide activates alpha 7 nicotinic acetylcholine receptors expressed in Xenopus oocytes. J Biol Chem 277(28):25056–25061

    Article  CAS  PubMed  Google Scholar 

  • Doering LC, Snyder EY (2000) Cholinergic expression by a neural stem cell line grafted to the adult medial septum/diagonal band complex. J Neurosci Res 61(6):597–604

    Article  CAS  PubMed  Google Scholar 

  • Doody RS, Dunn JK, Clark CM, Farlow M, Foster NL, Liao T et al (2001) Chronic donepezil treatment is associated with slowed cognitive decline in Alzheimer’s disease. Dement Geriatr Cogn Disord 12(4):295–300

    Article  CAS  PubMed  Google Scholar 

  • Dournaud P, Deleare P, Hauw JJ, Epelbaum J (1995) Differential correlation between neurochemical deficits, neuropathology, and cognitive status in Alzheimer’s disease. Neurobiol Aging 16(5):817–823

    Article  CAS  PubMed  Google Scholar 

  • Drachman DA (1977) Memory and cognitive function in man: does the cholinergic system have a specific role? Neurology 27(8):783–790

    Article  CAS  PubMed  Google Scholar 

  • Drachman DA, Leavitt J (1974) Human memory and the cholinergic system. A relationship to aging? Arch Neurol 30(2):113–121

    Article  CAS  PubMed  Google Scholar 

  • Drachman DA, Glosser G, Fleming P, Longenecker G (1982) Memory decline in the aged: treatment with lecithin and physostigmine. Neurology 32:944–950

    Article  CAS  PubMed  Google Scholar 

  • Dziewczapolski G, Glogowski CM, Masliah E, Heinemann SF (2009) Deletion of the α7 nicotinic acetylcholine receptor gene improves cognitive deficits and synaptic pathology in a mouse model of Alzheimer’s disease. J Neurosci 29(27):8805–8815

    Google Scholar 

  • Efange SMN, Garland EM, Staley JK, Khare AB, Mash DC (1997) Vesicular acetylcholine transporter density and Alzheimer’s disease. Neurobiol Aging 18(4):407–413

    Article  CAS  PubMed  Google Scholar 

  • Elrod K, Buccafusco JJ (1991) Correlation of the amnestic effects of nicotinic antagonists with inhibition of regional brain acetylcholine synthesis in rats. J Pharmacol Exp Ther 258(2):403–409

    CAS  PubMed  Google Scholar 

  • Emre M, Aarsland D, Albanese A, Byrne EJ, Deuschl G, De Deyn PP et al (2004) Rivastigmine for dementia associated with Parkinson’s disease. N Engl J Med 351(24):2509–2518

    Article  CAS  PubMed  Google Scholar 

  • Eskander MF, Nagykery NG, Leung EY, Khelghati B, Geula C (2005) Rivastigmine is a potent inhibitor of acetyl- and butyrylcholinesterase in Alzheimer’s plaques and tangles. Brain Res 1060(1–2):144–152

    Article  CAS  PubMed  Google Scholar 

  • Farlow MR, Alva G, Meng X, Olin JT (2010a) A 25-week, open-label trial investigating rivastigmine transdermal patches with concomitant memantine in mild-to-moderate Alzheimer’s disease: a post hoc analysis. Curr Med Res Opin 26(2):263–269

    Article  CAS  PubMed  Google Scholar 

  • Farlow MR, Grossberg G, Gauthier S, Meng X, Olin JT (2010b) The ACTION study: methodology of a trial to evaluate safety and efficacy of a higher dose rivastigmine transdermal patch in severe Alzheimer’s disease. Curr Med Res Opin 26(10):2441–2447

    Article  CAS  PubMed  Google Scholar 

  • Fass U, Panickar K, Personett D, Bryan D, Williams K, Gonzales J et al (2000) Differential vulnerability of primary cultured cholinergic neurons to nitric oxide excess. Neuroreport 11(5):931–936

    Article  CAS  PubMed  Google Scholar 

  • Figiel GS, Sadowsky CH, Strigas J, Koumaras B, Meng X, Gunay I (2008) Safety and efficacy of rivastigmine in patients with Alzheimer’s disease not responding adequately to donepezil: an open-label study. Prim Care Companion J Clin Psychiatry 10(4):291–298

    Article  PubMed Central  PubMed  Google Scholar 

  • Fodero LR, Mok SS, Losic D, Martin LL, Aguilar MI, Barrow CJ et al (2004) Alpha7-nicotinic acetylcholine receptors mediate an Abeta (1–42)-induced increase in the level of acetylcholinesterase in primary cortical neurones. J Neurochem 88(5):1186–1193

    Article  CAS  PubMed  Google Scholar 

  • Full prescribing information for Exelon patch: http://www.prnewswire.com/news-releases/novartis-exelon-patch-now-fda-approved-to-treat-patients-across-all-stages-of-alzheimers-disease-213414981.html

  • Galasko D, Bennett D, Sano M, Ernesto C, Thomas R, Grundman M et al (1997) An inventory to assess activities of daily living for clinical trials in Alzheimer’s disease. The Alzheimer’s Disease Cooperative Study. Alzheimer Dis Assoc Disord 11(Suppl 2):S33–S39

    Article  PubMed  Google Scholar 

  • Geerts H (2005) Indicators of neuroprotection with galantamine. Brain Res Bull 64(6):519–524

    Article  CAS  PubMed  Google Scholar 

  • Geula C, Mesulam MM (1996) Systematic regional variations in the loss of cortical cholinergic fibers in Alzheimer’s disease. Cereb Cortex 6(2):165–177

    Article  CAS  PubMed  Google Scholar 

  • Geula C, Mesulam MM (1999) Cholinergic systems in Alzheimer’s disease. In: Terry RD et al (eds) Alzheimer disease, 2nd edn. Lippincott Williams & Wilkins, Philadelphia, pp 69–292

    Google Scholar 

  • Giacobini E (2001) Do cholinesterase inhibitors have disease-modifying effects in Alzheimer’s disease? CNS Drugs 15(2):85–91

    Article  CAS  PubMed  Google Scholar 

  • Gibbs RB (2010) Estrogen therapy and cognition: a review of the cholinergic hypothesis. Endocr Rev 31(2):224–253

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gilmor ML, Erickson JD, Varoqui H, Hersh LB, Bennett DA, Cochran EJ, Mufson EJ, Levey A (1999) Preservation of nucleus basalis neurons containing choline acetyltransferase and the vesicular acetylcholine transporter in the elderly with mild cognitive impairment and early Alzheimer’s disease. J Comp Neurol 411(4):693–704

    Article  CAS  PubMed  Google Scholar 

  • Greig NH, Utsuki T, Yu Q, Zhu X, Holloway HW, Perry T et al (2001) A new therapeutic target in Alzheimer’s disease treatment: attention to butyrylcholinesterase. Curr Med Res Opin 17(3):159–165

    Google Scholar 

  • Grigoryan GA, Gray JA, Rashid T, Chadwick A, Hodges H (2000) Conditionally immortal neuroepithelial stem cell grafts restore spatial learning in rats with lesions at the source of cholinergic forebrain projections cholinergic forebrain projections. Restor Neurol Neurosci 17(4):1

    Google Scholar 

  • Grossberg GT, Stahelin HB, Messina JC, Anand R, Veach J (2000) Lack of adverse pharmacodynamic drug interactions with rivastigmine and twenty-two classes of medications. Int J Geriatr Psychiatry 15(3):242–247

    Article  CAS  PubMed  Google Scholar 

  • Grossberg GT, Sadowsky C, Olin JT (2010a) Rivastigmine transdermal system for the treatment of mild to moderate Alzheimer’s disease. Int J Clin Pract 64(5):651–660

    Article  CAS  PubMed  Google Scholar 

  • Grossberg GT, Schmitt FA, Meng X, Tekin S, Olin J (2010b) Reviews: effects of transdermal rivastigmine on ADAS-cog items in mild-to-moderate Alzheimer’s disease. Am J Alzheimers Dis Other Demen 25(8):627–633

    Article  PubMed  Google Scholar 

  • Grossberg G, Meng X, Olin JT (2011) Impact of rivastigmine patch and capsules on activities of daily living in Alzheimer’s disease. Am J Alzheimers Dis Other Demen 26(1):65–71

    Article  PubMed  Google Scholar 

  • Grossberg G, Cummings J, Frolich L, Bellelli G, Molinuevo JL, Krahnke T et al (2013) Efficacy of higher dose 13.3 mg/24 h rivastigmine patch on instrumental activities of daily living in patients with mild-to-moderate Alzheimer’s disease. Am J Alzheimers Dis Other Demen 28(6):583–591

    Article  PubMed  Google Scholar 

  • Gsell W, Jungkunz G, Riederer P (2004) Functional neurochemistry of Alzheimer’s disease. Curr Pharm Des 10(3):265–293

    Article  CAS  PubMed  Google Scholar 

  • Guillozet al, Smiley JF, Mash DC, Mesulam MM (1997) Butyrylcholinesterase in the life cycle of amyloid plaques. Ann Neurol 42(6):909–918

    Google Scholar 

  • Haring R, Gurwitz D, Barg J, Pinkas-Kramarski R, Heldman E, Pittel Z et al (1995) NGF promotes amyloid precursor protein secretion via muscarinic receptor activation. Biochem Biophys Res Commun 213(1):15–23

    Google Scholar 

  • Hashimoto R, Mori E (2011) Mini-mental state examination (MMSE). Nihon Rinsho 69 Suppl 8(1975):398–402

    Google Scholar 

  • Hasselmo ME, Sarter M (2011) Modes and models of forebrain cholinergic neuromodulation of cognition. Neuropsychopharmacology 36(1):52–73

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hock C, Maddalena A, Raschig A, Müller-Spahn F, Eschweiler G, Hager K et al (2003) Treatment with the selective muscarinic m1 agonist talsaclidine decreases cerebrospinal fluid levels of a beta 42 in patients with Alzheimer’s disease. Amyloid 10:1–6

    Article  CAS  PubMed  Google Scholar 

  • Hornung OP, Regen F, Danker-Hopfe H, Schredl M, Heuser I (2007) The relationship between REM sleep and memory consolidation in old age and effects of cholinergic medication. Biol Psychiatry 61(6):750–757

    Article  CAS  PubMed  Google Scholar 

  • Hoshi M, Takashima A, Murayama M, Yasutake K, Yoshida N, Ishiguro K et al (1997) Nontoxic amyloid β peptide1-42 suppresses acetylcholine synthesis. Possible role in cholinergic dysfunction in Alzheimer’s disease. J Biol Chem 272(4):2038–2041

    Article  CAS  PubMed  Google Scholar 

  • Hristensen H, Maltby N, Jorm AF, Creasey H, Broe G (1992) Cholinergic “blockade” as a model of the cognitive deficits in Alzheimer’s disease. Brain 115(Pt 6):1681–1699

    Article  Google Scholar 

  • Hshieh TT, Fong TG, Marcantonio ER, Inouye SK (2008) Cholinergic deficiency hypothesis in delirium: a synthesis of current evidence. J Gerontol A Biol Sci Med Sci 63(7):764–772

    Article  PubMed Central  PubMed  Google Scholar 

  • Hunter AJ, Roberts FF (1988) The effect of pirenzepine on spatial learning in the Morris Water Maze. Pharmacol Biochem Behav 30(2):519–523

    Article  CAS  PubMed  Google Scholar 

  • Isacson O, Seo H, Lin L, Albeck D, Granholm AC (2002) Alzheimer’s disease and Down’s syndrome: roles of APP, trophic factors and ACh. Trends Neurosci 25(2):79–84

    Article  CAS  PubMed  Google Scholar 

  • Julka D, Sandhir R, Gill KD (1995) Altered cholinergic metabolism in rat CNS following aluminum exposure: implications on learning performance. J Neurochem 65(5):2157–2164

    Article  CAS  PubMed  Google Scholar 

  • Kar S, Slowikowski SP, Westaway D, Mount HT (2004) Interactions between beta-amyloid and central cholinergic neurons: implications for Alzheimer’s disease. J Psychiatry Neurosci 29(6):427–441

    Google Scholar 

  • Kelly JF, Furukawa K, Barger SW, Rengen MR, Mark RJ, Blanc EM et al (1996) Amyloid beta-peptide disrupts carbachol-induced muscarinic cholinergic signal transduction in cortical neurons. Proc Natl Acad Sci U S A 93(13):6753–6758

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kuhl DE, Minoshima S, Fessler JA, Frey KA, Foster NL, Ficaro EP et al (1996) In vivo mapping of cholinergic terminals in normal aging, Alzheimer’s disease, and Parkinson’s disease. Ann Neurol 40(3):399–410

    Article  CAS  PubMed  Google Scholar 

  • Kuhl DE, Koeppe RA, Minoshima S, Snyder SE, Ficaro EP, Foster NL et al (1999) In vivo mapping of cerebral acetylcholinesterase activity in aging and Alzheimer’s disease. Neurology 52(4):691–699

    Article  CAS  PubMed  Google Scholar 

  • Lane RM, Kivipelto M, Greig NH (2004) Acetylcholinesterase and its inhibition in Alzheimer disease. Clin Neuropharmacol 27(3):141–149

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Sevigny J (2011) Effects of body weight on tolerability of rivastigmine transdermal patch: a post-hoc analysis of a double-blind trial in patients with Alzheimer disease. Alzheimer Dis Assoc Disord 31(25):58–62

    Article  CAS  Google Scholar 

  • Lefèvre G, Sedek G, Jhee SS et al (2008) Pharmacokinetics and pharmacodynamics of the novel daily rivastigmine transdermal patch compared with twice-daily capsules in Alzheimer’s disease patients. Clin Pharmacol Ther 83(1):106–114

    Article  PubMed  CAS  Google Scholar 

  • Lefèvre G, Büche M, Sedek G, Maton S, Enz A, Lorch U et al (2009) Similar rivastigmine pharmacokinetics and pharmacodynamics in Japanese and white healthy participants following the application of novel rivastigmine patch. J Clin Pharmacol 49:430–443

    Article  PubMed  CAS  Google Scholar 

  • Lemstra AW, Eikelenboom P, Van Gool WA (2003) The cholinergic deficiency syndrome and its therapeutic implications. Gerontology 49(1):55–60

    Article  CAS  PubMed  Google Scholar 

  • Levin ED (1992) Nicotinic systems and cognitive function. Psychopharmacology (Berl) 108(4):417–431

    Article  CAS  Google Scholar 

  • Li X, Song L, Jope RS (1996) Cholinergic stimulation of AP-1 and NF kappa B transcription factors is differentially sensitive to oxidative stress in SH-SY5Y neuroblastoma: relationship to phosphoinositide hydrolysis. J Neurosci 16(19):5914–5922

    CAS  PubMed  Google Scholar 

  • Li Y, Hai S, Zhou Y, Dong BR (2015) Cholinesterase inhibitors for rarer dementias associated with neurological conditions. Cochrane Database Syst Rev 3:CD009444. doi: 10.1002/14651858.CD009444.pub3. Review. PubMed PMID: 25734590

  • Liskowsky W, Schliebs R (2006) Muscarinic acetylcholine receptor inhibition in transgenic Alzheimer-like Tg2576 mice by scopolamine favours the amyloidogenic route of processing of amyloid precursor protein. Int J Dev Neurosci 24(2-3):149–156

    Article  CAS  PubMed  Google Scholar 

  • Lleó A (2007) Current therapeutic options for Alzheimer’s disease. Curr Genomics 8(8):550–558

    Article  PubMed Central  PubMed  Google Scholar 

  • Logsdon RG, Gibbons LE, McCurry SM, Teri L (1999) Quality of life in Alzheimer’s disease: patient and caregiver reports. J Ment Health Aging 5(1):28–36

    Google Scholar 

  • Luppi PH, Gervasoni D, Verret L, Goutagny R, Peyron C, Salvert D et al (2006) Paradoxical (REM) sleep genesis: The switch from an aminergic-cholinergic to a GABAergic-glutamatergic hypothesis. J Physiol Paris 100(5–6):271–283

    Article  CAS  PubMed  Google Scholar 

  • Malo M, Diebler MF, Prado De Carvalho L, Meunier FM, Dunant Y, Bloc A et al (1999) Evoked acetylcholine release by immortalized brain endothelial cells genetically modified to express choline acetyltransferase and/or the vesicular acetylcholine transporter. J Neurochem 73(4):1483–1491

    Article  CAS  PubMed  Google Scholar 

  • McDonald RJ (2002) Multiple combinations of co-factors produce variants of age-related cognitive decline: a theory. Can J Exp Psychol 56(3):221–239

    Article  PubMed  Google Scholar 

  • McKinney M (2005) Brain cholinergic vulnerability: relevance to behavior and disease. Biochem Pharmacol 70(8):1115–1124

    Article  CAS  PubMed  Google Scholar 

  • McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K et al (1999) Soluble pool of Aβ amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol 46(6):860–866

    Article  CAS  PubMed  Google Scholar 

  • Medical dictionary for regulatory activities. http://www.meddra.org/

  • Mega MS, Cummings JL, Salloway S, Malloy P (1997) The limbic system: an anatomic, phylogenetic, and clinical perspective. J Neuropsychiatry Clin Neurosci 9(3):315–330

    Article  CAS  PubMed  Google Scholar 

  • Mendez MF, Ala T, Underwood KL (1992) Development of scoring criteria for the clock drawing task in Alzheimer’s disease. J Am Geriatr Soc 40(11):1095–1099

    Article  CAS  PubMed  Google Scholar 

  • Mesulam MM (1995) Structure and function of cholinergic pathways in the cerebral cortex, limbic system basal ganglia and thalamus of the human brain. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology the fourth generation of progress. Raven Press, New York, pp 135–146

    Google Scholar 

  • Mesulam M (2004) The cholinergic lesion of Alzheimer’s disease: pivotal factor or side show? Learn Mem 11(1):43–49

    Article  PubMed  Google Scholar 

  • Mesulam MM, Geula C (1994) Butyrylcholinesterase reactivity differentiates the amyloid plaques of aging from those of dementia. Ann Neurol 36(5):722–727

    Article  CAS  PubMed  Google Scholar 

  • Mitchell SL, Teno JM, Kiely DK, Shaffer ML, Jones RN, Prigerson HG et al (2009) The clinical course of advanced dementia. N Engl J Med 361(16):1529–1538

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Molchan SE, Martinez RA, Hill JL, Weingartner HJ, Thompson KV (1992) B ST. Increased cognitive sensitivity to scopolamine with age and a perspective on the scopolamine model. Brain Res Rev 17(3):215–226

    Article  CAS  PubMed  Google Scholar 

  • Molinuevo JL, Frölich L, Grossberg GT, Galvin JE, Cummings JL, Krahnke T et al (2015) Responder analysis of a randomized comparison of the 13.3 mg/24 h and 9.5 mg/24 h rivastigmine patch. Alzheimers Res Ther 7(1):1–6

    Google Scholar 

  • Morán MA, Mufson EJ, Gómez-Ramos P (1993) Colocalization of cholinesterases with beta amyloid protein in aged and Alzheimer’s brains. Acta Neuropathol 85(4):362–369

    Article  PubMed  Google Scholar 

  • Mori F, Lai CC, Fusi F, Giacobini E (1995) Cholinesterase inhibitors increase secretion of APPs in rat brain cortex. Neuroreport 6(4):633–636

    Article  CAS  PubMed  Google Scholar 

  • Mufson EJ, Counts SE, Fahnestock M, Ginsberg SD (2007) Cholinotrophic molecular substrates of mild cognitive impairment in the elderly. Curr Alzheimer Res 4(4):340–350

    Article  CAS  PubMed  Google Scholar 

  • Mufson EJ, Counts SE, Perez SE, Ginsberg SD (2008) Cholinergic system during the progression of Alzheimer’s disease: therapeutic implications. Expert Rev Neurother 8(11):1703–1718

    Google Scholar 

  • Müller DM, Mendla K, Farber SA, Nitsch RM (1997) Muscarinic m1 receptor agonists increase the secretion of the amyloid precursor protein ectodomain. Life Sci 60(13-14):985–991

    Article  PubMed  Google Scholar 

  • Murdoch I, Perry EK, Court JA, Graham DI, Dewar D (1998) Cortical cholinergic dysfunction after human head injury. J Neurotrauma 15(5):295–305

    Article  CAS  PubMed  Google Scholar 

  • Newhouse PA, Potter A, Corwin J, Lenox R (1994) Age-related effects of the nicotinic antagonist mecamylamine on cognition and behavior. Neuropsychopharmacology 10(2):93–107

    Article  CAS  PubMed  Google Scholar 

  • Newhouse PA, Potter A, Kelton M, Corwin J (2001) Nicotinic treatment of Alzheimer’s disease. Biol Psychiatry 49(3):268–278

    Article  CAS  PubMed  Google Scholar 

  • Nieoullon A, Bentué-Ferrer D, Bordet R, Tsolaki M, Förstl H (2008) Importance of circadian rhythmicity in the cholinergic treatment of Alzheimer’s disease: focus on galantamine*. Curr Med Res Opin 24(12):3357–3367

    Article  CAS  PubMed  Google Scholar 

  • Niewiadomska G, Baksalerska-Pazera M, Riedel G (2006) Cytoskeletal transport in the aging brain: focus on the cholinergic system. Rev Neurosci 17(6):581–618

    Article  CAS  PubMed  Google Scholar 

  • Nilsson L, Nordberg A, Hardy J, Wester P, Winblad B (1986) Physostigmine restores 3H-acetylcholine efflux from Alzheimer brain slices to normal level. J Neural Transm 67(3–4):275–285

    Article  CAS  PubMed  Google Scholar 

  • Nordberg A (1992) Neuroreceptor changes in Alzheimer disease. Cerebrovasc Brain Metab Rev 4(4):303–328

    CAS  PubMed  Google Scholar 

  • Nordberg A (2001) Nicotinic receptor abnormalities of Alzheimer’s disease: therapeutic implications. Biol Psychiatry 49(3):200–210

    Google Scholar 

  • Nordberg A, Alafuzoff I, Winblad B (1992) Nicotinic and muscarinic subtypes in the human brain: changes with aging and dementia. J Neurosci Res 31(1):103–111

    Google Scholar 

  • Oddo S, Caccamo A, Green KN, Liang K, Tran L, Chen Y et al (2005) Chronic nicotine administration exacerbates tau pathology in a transgenic model of Alzheimer’s disease. Proc Natl Acad Sci U S A 102(8):3046–3051

    Google Scholar 

  • Olin JT, Bhatnagar V, Reyes P, Koumaras B, Meng X, Brannan S (2010) Safety and tolerability of rivastigmine capsule with memantine in patients with probable Alzheimer’s disease: A 26-week, open-label, prospective trial (Study ENA713B US32). Int J Geriatr Psychiatry 25(4):419–426

    Article  PubMed  Google Scholar 

  • Oz M, Lorke DE, Yang KH, Petroianu G (2013) On the interaction of beta-amyloid peptides and alpha7-nicotinic acetylcholine receptors in Alzheimer’s disease. Curr Alzheimer Res 10(6):618–630

    Article  CAS  PubMed  Google Scholar 

  • Pedersen WA, Kloczewiak MA, Blusztajn JK (1996) Amyloid beta-protein reduces acetylcholine synthesis in a cell line derived from cholinergic neurons of the basal forebrain. Proc Natl Acad Sci U S A 93(15):8068–8071

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pepeu G, Giovannini MG (2009) Cholinesterase inhibitors and beyond. Curr Alzheimer Res 6(2):86–96

    Google Scholar 

  • Perini G, Della-Bianca V, Politi V, Della Valle G, Dal-Pra I, Rossi F et al (2002) Role of p75 neurotrophin receptor in the neurotoxicity by beta-amyloid peptides and synergistic effect of inflammatory cytokines. J Exp Med 195(7):907–918

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Perry EK, Gibson PH, Blessed G, Perry RH, Tomlinson BE (1977) Neurotransmitter enzyme abnormalities in senile dementia. Choline acetyltransferase and glutamic acid decarboxylase activities in necropsy brain tissue. J Neurol Sci 34(2):247–265

    Article  CAS  PubMed  Google Scholar 

  • Perry EK, Curtis M, Dick DJ, Candy JM, Atack JR, Bloxham CA et al (1985) Cholinergic correlates of cognitive impairment in Parkinson’s disease: comparisons with Alzheimer’s disease. J Neurol Neurosurg Psychiatry 48(5):413–421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Perry E, Tomlinson B, Blessed G, Bergmann K, Gibson P, Perry R (1996) Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Int J Geriatr Psychiatry 11(9):765–771

    Article  Google Scholar 

  • Perry E, Walker M, Grace J, Perry R (1999) Acetylcholine in mind: a neurotransmitter correlate of consciousness? Trends Neurosci 22(6):273–280

    Article  CAS  PubMed  Google Scholar 

  • Picciotto MR, Zoli M (2002) Nicotinic receptors in aging and dementia. J Neurobiol 53(4):641–655

    Google Scholar 

  • Pinto T, Lanctôt KL, Herrmann N (2011) Revisiting the cholinergic hypothesis of behavioral and psychological symptoms in dementia of the Alzheimer’s type. Ageing Res Rev 10(4):404–412

    Google Scholar 

  • Placzek AN, Zhang TA, Dani JA (2009) Nicotinic mechanisms influencing synaptic plasticity in the hippocampus. Acta Pharmacol Sin 30(6):752–760

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Racchi M, Sironi M, Caprera A, Konig G, Govoni S (2001) Short- and long-term effect of acetylcholinesterase inhibition on the expression and metabolism of the amyloid precursor protein. Mol Psychiatry 6(5):520–528

    Article  CAS  PubMed  Google Scholar 

  • Raedler TJ, Bymaster FP, Tandon R, Copolov D, Dean B (2007) Towards a muscarinic hypothesis of schizophrenia. Mol Psychiatry 12(3):232–246

    CAS  PubMed  Google Scholar 

  • Rakonczay Z (2003) Potencies and selectivities of inhibitors of acetylcholinesterase and its molecular forms in normal and Alzheimer’s disease brain. Acta Biol Hung 54(2):183–189

    Article  CAS  PubMed  Google Scholar 

  • Rapp PR, Gallagher M (1996) Preserved neuron number in the hippocampus of aged rats with spatial learning deficits. Proc Natl Acad Sci U S A 93(18):9926–9930

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rasch BH, Born J, Gais S (2006) Combined blockade of cholinergic receptors shifts the brain from stimulus encoding to memory consolidation. J Cogn Neurosci 18:793–802

    Article  PubMed  Google Scholar 

  • Rasmussen T, Schliemann T, SØrensen JC, Zimmer J, West MJ (1996) Memory impaired aged rats: no loss of principal hippocampal and subicular neurons. Neurobiol Aging 17(1):143–147

    Article  CAS  PubMed  Google Scholar 

  • Reid RT, Sabbagh MN (2008) Effects of cholinesterase inhibitors on rat nicotinic receptor levels in vivo and in vitro. J Neural Transm 115(10):1437–1444

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reyes AE, Chacón MA, Dinamarca MC, Cerpa W, Morgan C, Inestrosa NC (2004) Acetylcholinesterase-Abeta complexes are more toxic than Abeta fibrils in rat hippocampus: effect on rat beta-amyloid aggregation, laminin expression, reactive astrocytosis, and neuronal cell loss. Am J Pathol 164(6):2163–2174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rinne JO, Kaasinen V, Järvenpää T, Någren K, Roivainen A, Yu M et al (2003) Brain acetylcholinesterase activity in mild cognitive impairment and early Alzheimer’s disease. J Neurol Neurosurg Psychiatry 74(1):113–115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rivastigmine (Exelon) transdermal patch: risk of medication errors (2010) https://www.gov.uk/drug-safety-update/rivastigmine-exelon-transdermal-patch-risk-of-medication-errors

  • Roe CM, Xiong C, Miller JP, Morris JC (2007) Education and Alzheimer’s disease without dementia: support for the cognitive reserve hypothesis. Neurology 68:223–228

    Article  PubMed  Google Scholar 

  • Rolinski M, Fox C, Maidment I, McShane R (2012) Parkinson’s disease dementia and cognitive impairment in Parkinson’s disease, Cholinesterase inhibitors for dementia with Lewy bodies. Cochrane Database Syst Rev 3:CD006504

    PubMed  Google Scholar 

  • Rosen WG, Mohs RC, Davis KL (1984) A new rating scale for Alzheimer’s disease. Am J Psychiatry 141(11):1356–1364

    Article  CAS  PubMed  Google Scholar 

  • Rösler M, Anand R, Cicin-Sain A, Gauthier S, Agid Y, Dal-Bianco P et al (1999) Efficacy and safety of rivastigmine in patients with Alzheimer’s disease: international randomised controlled trial. BMJ 318(7184):633–638

    Article  PubMed Central  PubMed  Google Scholar 

  • Rubio A, Pérez M, Avila J (2006) Acetylcholine receptors and tau phosphorylation. Curr Mol Med 6(4):423–428

    Article  CAS  PubMed  Google Scholar 

  • Rylett RJ, Ball MJ, Colhoun EH (1983) Evidence for high affinity choline transport in synaptosomes prepared from hippocampus and neocortex of patients with Alzheimer’s disease. Brain Res 289(1–2):169–175

    Article  CAS  PubMed  Google Scholar 

  • Sadowsky CH, Farlow MR, Atkinson L, Steadman J, Koumaras B, Chen M et al (2005) Switching from donepezil to rivastigmine is well tolerated: results of an open-label safety and tolerability study. Prim Care Companion J Clin Psychiatry 7(2):43–48

    Article  PubMed Central  PubMed  Google Scholar 

  • Salehi A, Verhaagen J, Dijkhuizen PA, Swaab DF (1996) Co-localization of high-affinity neurotrophin receptors in nucleus basalis of Meynert neurons and their differential reduction in Alzheimer’s disease. Neuroscience 75(2):373–387

    Article  CAS  PubMed  Google Scholar 

  • Sarter M, Bruno JP (1997) Cognitive functions of cortical acetylcholine: toward a unifying hypothesis. Brain Res Rev 23(1–2):28–46

    Article  CAS  PubMed  Google Scholar 

  • Sarter M, Gehring WJ, Kozak R (2006) More attention must be paid: the neurobiology of attentional effort. Brain Res Rev 51(2):145–160

    Article  PubMed  Google Scholar 

  • Sassin I, Schultz C, Thal DR, Rüb U, Arai K, Braak E et al (2000) Evolution of Alzheimer’s disease-related cytoskeletal changes in the basal nucleus of Meynert. Acta Neuropathol 100(3):259–269

    Article  CAS  PubMed  Google Scholar 

  • Schliebs R (2005) Basal forebrain cholinergic lesion by 192IgG-saporin: a tool to assess the consequences of cortical cholinergic dysfunction in Alzheimer’s disease. In: Wiley RG, Lappi DA (eds) Molecular neurosurgery with targeted toxins. Humana Press, Totowa, pp 59–86

    Google Scholar 

  • Schliebs R, Arendt T (2006) The significance of the cholinergic system in the brain during aging and in Alzheimer’s disease. J Neural Transm 113(11):1625–1644

    Article  CAS  PubMed  Google Scholar 

  • Schliebs R, Arendt T (2011) The cholinergic system in aging and neuronal degeneration. Behav Brain Res 221(2):555–563

    Google Scholar 

  • Schneider LS, Olin JT, Doody RS, Clark CM, Morris JC, Reisberg B et al (1997) Validity and reliability of the Alzheimer’s Disease Cooperative Study-Clinical Global Impression of Change. The Alzheimer’s Disease Cooperative Study. Alzheimer Dis Assoc Disord 11(Suppl 2):S22–S32

    Article  PubMed  Google Scholar 

  • Schröder H, Giacobini E, Struble RG, Zilles K, Maelicke A (1991) Nicotinic cholinoceptive neurons of the frontal cortex are reduced in Alzheimer’s disease. Neurobiol Aging 12(3):259–262

    Article  PubMed  Google Scholar 

  • Shearman E, Rossi S, Szasz B, Juranyi Z, Fallon S, Pomara N et al (2006) Changes in cerebral neurotransmitters and metabolites induced by acute donepezil and memantine administrations: a microdialysis study. Brain Res Bull 69(2):204–213

    Article  CAS  PubMed  Google Scholar 

  • Shua-Haim JR, Yap C, Kretov A et al (2008a) Results of next-day crossover study of rivastigmine oral capsules (Exelon) to rivastigmine patch (Exelon Patch) in Alzheimer’s disease patients: a two-month clinical experience [abstract no. P2-411]. Int Conf Alzheimers Dis

    Google Scholar 

  • Shua-Haim JR, Yap C, Kretov A et al (2008b) Results of next day crossover study of galantamine ER (Razadyne Er) to rivastigmine patch (Exelon patch) in Alzheimer’s disease patients: a two-month clinical experience [abstract no. P2-410]. Int Conf Alzheimers Dis

    Google Scholar 

  • Shua-Haim J, Yap C, Kretov A et al (2008c) Results of next day crossover study of donepezil (Aricept) to rivastigmine patch (Exelon patch) in Alzheimer’s disease patients: a two month clinical experience [abstract no. P2-407]. Int Conf Alzheimers Dis

    Google Scholar 

  • Shua-Haim J, Yap C, Kretov A et al (2008d) Results of two-step crossover study of donepezil (Aricept) to rivastigmine patch (Exelon Patch) in Alzheimer’s disease patients: a two-month clinical experience [abstract no. P2-409]. Int Conf Alzheimers Dis

    Google Scholar 

  • Simic G, Stanic G, Mladinov M, Jovanov-Milosevic N, Kostovic I, Hof PR (2009) Does Alzheimer’s disease begin in the brainstem?: annotation. Neuropathol Appl Neurobiol 35(6):532–554

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Small SA, Chawla MK, Buonocore M, Rapp PR, Barnes CA (2004) Imaging correlates of brain function in monkeys and rats isolates a hippocampal subregion differentially vulnerable to aging. Proc Natl Acad Sci U S A 101(18):7181–7186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith DE, Roberts J, Gage FH, Tuszynski MH (1999) Age-associated neuronal atrophy occurs in the primate brain and is reversible by growth factor gene therapy. Proc Natl Acad Sci U S A 96(19):10893–10898

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Summary of product characteristics for rivastigmine. European Medicines Agency. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000169/WC500032598.pdf

  • Szutowicz A, Bielarczyk H, Gul S, Ronowska A, Pawełczyk T, Jankowska-Kulawy A (2006) Phenotype-dependent susceptibility of cholinergic neuroblastoma cells to neurotoxic inputs. Metab Brain Dis 21(2–3):149–161

    CAS  PubMed  Google Scholar 

  • Tasker A, Perry EK, Ballard CG (2005) Butyrylcholinesterase: impact on symptoms and progression of cognitive impairment. Expert Rev Neurother 5(1):101–106

    Article  CAS  PubMed  Google Scholar 

  • Terry AV Jr, Buccafusco JJ (2003) The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther 306(3):821–827

    Article  CAS  PubMed  Google Scholar 

  • Terry AV, Buccafusco JJ, Jackson WJ (1993) Scopolamine reversal of nicotine enhanced delayed matching-to-sample performance in monkeys. Pharmacol Biochem Behav 45(4):925–929

    Article  CAS  PubMed  Google Scholar 

  • Tiraboschi P, Hansen LA, Alford M, Masliah E, Thal LJ, Corey-Bloom J (2000) The decline in synapses and cholinergic activity is asynchronous in Alzheimer’s disease. Neurology 55(9):1278–1283

    Article  CAS  PubMed  Google Scholar 

  • Trillo L, Das D, Hsieh W, Medina B, Moghadam S, Lin B et al (2013) Ascending monoaminergic systems alterations in Alzheimer’s disease. Translating basic science into clinical care. Neurosci Biobehav Rev 37(8):1363–1379

    Google Scholar 

  • Vagenas V, Vlachos GS, Vlachou N, Liakopoulos D, Kalaitzakis ME, Vikelis M (2015) A prospective non-interventional study for evaluation of quality of life in patients with Alzheimer’s disease treated with rivastigmine transdermal patch. SAGE Open Med. doi: 10.1177/2050312115587795. This open – access article can be found at http://smo.sagepub.com/content/3/2050312115587795.full.pdf+html

    Google Scholar 

  • Van der Zee EA, Boersma GJ, Hut RA (2009) The neurobiology of circadian rhythms. Curr Opin Pulm Med 15(6):534–539

    Article  PubMed  Google Scholar 

  • Van der Zee EA, Platt B, Riedel G (2011) Acetylcholine: future research and perspectives. Behav Brain Res 221(2):583–586

    Google Scholar 

  • Vitiello B, Martin A, Hill J, Mack C, Molchan S, Martinez R et al (1997) Cognitive and behavioral effects of cholinergic, dopaminergic, and serotonergic blockade in humans. Neuropsychopharmacology 16(1):15–24

    Article  CAS  PubMed  Google Scholar 

  • Waller SB, Ball MJ, Reynolds MA, London ED (1986) Muscarinic binding and choline acetyltransferase in postmortem brains of demented patients. Can J Neurol Sci 13(4 Suppl):528–532

    CAS  PubMed  Google Scholar 

  • Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS et al (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416(6880):535–539

    Article  CAS  PubMed  Google Scholar 

  • Wang HW, Pasternak JF, Kuo H, Ristic H, Lambert MP, Chromy B et al (2002) Soluble oligomers of β amyloid (1–42) inhibit long-term potentiation but not long-term depression in rat dentate gyrus. Brain Res 924(2):133–140

    Article  CAS  PubMed  Google Scholar 

  • Wang H-Y, Li W, Benedetti NJ, Lee DHS (2003) Alpha 7 nicotinic acetylcholine receptors mediate beta-amyloid peptide-induced tau protein phosphorylation. J Biol Chem 278(34):31547–31553

    Article  CAS  PubMed  Google Scholar 

  • Weinstock M (1999) Selectivity of cholinesterase inhibition: clinical implications for the treatment of Alzheimer’s disease. CNS Drugs 12(4):307–323

    Article  CAS  Google Scholar 

  • Wenk GL, McGann K, Mencarelli A, Hauss-Wegrzyniak B, Del Soldato P, Fiorucci S (2000) Mechanisms to prevent the toxicity of chronic neuroinflammation on forebrain cholinergic neurons. Eur J Pharmacol 402(1–2):77–85

    Article  CAS  PubMed  Google Scholar 

  • Wilcock GK, Esiri MM, Bowen DM, Smith CC (1982) Alzheimer’s disease. Correlation of cortical choline acetyltransferase activity with the severity of dementia and histological abnormalities. J Neurol Sci 57(2–3):407–417

    Article  CAS  PubMed  Google Scholar 

  • Williams B, Granholm AC, Sambamurti K (2007) Age-dependent loss of NGF signaling in the rat basal forebrain is due to disrupted MAPK activation. Neurosci Lett 413(2):110–114

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Winblad B, Grossberg G, Frölich L, Farlow M, Zechner S, Nagel J et al (2007) IDEAL: a 6-month, double-blind, placebo-controlled study of the first skin patch for Alzheimer disease. Neurology 69(4 Suppl 1):S14–S22

    Article  CAS  PubMed  Google Scholar 

  • Ypsilanti AR, Girão da Cruz MT, Burgess A, Aubert I (2008) The length of hippocampal cholinergic fibers is reduced in the aging brain. Neurobiol Aging 29(11):1666–1679

    Article  CAS  PubMed  Google Scholar 

  • Zubieta JK, Koeppe RA, Frey KA, Kilbourn MR, Mangner TJ, Foster NL et al (2001) Assessment of muscarinic receptor concentrations in aging and Alzheimer disease with [11C]NMPB and PET. Synapse 39(4):275–287

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Ignacio Flores, co-author, Memory Unit, Neurology Service, Hospital de la Santa Creu i Sant Pau – Autonomous University of Barcelona, Spain and Hospital San Martin de La Plata, Buenos Aires, Argentina.

Dr. Roser Ribosa, co-author, Memory Unit, Neurology Service, Hospital de la Santa Creu i Sant Pau – Autonomous University of Barcelona, Spain.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gonzalez, R.B., Flores, I., Ribosa-Nogué, R. (2016). Practical Pharmacology of Rivastigmine. In: Practical Pharmacology for Alzheimer’s Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-26206-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26206-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26204-8

  • Online ISBN: 978-3-319-26206-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics