Skip to main content

Microstructure Optimization of Pt/C Catalysts for PEMFC

  • Conference paper
  • First Online:
Advanced Materials

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 175))

Abstract

Development of optimal methods for the synthesis and for the control of multi-level microstructure of Pt/C materials is essential for the preparation of electrocatalysts , which have high activity and durability. Nucleation/growth of metallic nanoparticles could take place in the liquid phase, on the surface and in the pores of the carbon microparticles during the process of chemical reduction of Pt precursor in a liquid phase. These processes are sensitive to the composition of the medium, temperature, pH, mass transfer conditions, and other factors. On the one hand, that creates more opportunities to search the optimal conditions of synthesis. On the other hand, it makes difficult to control the reproducibility of the composition/structure of Pt/C . Pt/C materials with metal fraction from 10 to 20 wt% were obtained in this work. An average size of Pt crystallites was from 1.0 to 5.5 nm, depending on the method and conditions of synthesis. Electrochemically active surface area of catalysts measured by hydrogen electrodesorption method, was from 32 to 152 m2/gPt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.A. Gasteiger, S.S. Kocha, B. Sompalli et al., Appl. Catalysis B: Environ. 56, 9 (2005)

    Article  Google Scholar 

  2. Y. Shao-Horn, W.C. Sheng, S. Chen et al., Top. Catal. 46, 285 (2007)

    Article  Google Scholar 

  3. A.B. Yaroslavtsev, Yu.A. Dobrovolsky, N.S. Shaglaeva, et al., Uspekhi Khimii, 81, 191 (2012) (In Russian)

    Google Scholar 

  4. M.R. Tarasevich, Altern Energ Ecol 85(5), 135 (2010) (In Russian)

    Google Scholar 

  5. J. Zhang, X. Wang, C. Wu et al., React. Kinet. Catal. Lett. 83(2), 229 (2004)

    Article  Google Scholar 

  6. J. Chen, C. Jiang, X. Yang et al., Electrochem. Comm. 13, 314 (2011)

    Article  Google Scholar 

  7. H.-C. Ma, X.-Z. Xue, J.-H. Liao et al., Appl. Surface Sci. 252, 8593 (2006)

    Article  Google Scholar 

  8. J. Prabhuram, T.S. Zhao, C.W. Wong et al., J. Power Sour. 134, 1 (2004)

    Article  Google Scholar 

  9. F.J. Nores-Pondala, I.M. Vilellab, H. Troianic et al., Int. J. Hydrogen Energy 34, 8193 (2009)

    Article  Google Scholar 

  10. J. Qi, L.H. Jiang, M.Y. Jing et al., Int. J. Hydrogen Energy 36, 10490 (2011)

    Article  Google Scholar 

  11. P.C. Favilla, J.J. Acosta, C.E. Schvezov et al., Chem. Eng. Sci. 101, 27 (2013)

    Article  Google Scholar 

  12. Z. Zhou, S. Wang, W. Zhou et al., Phys. Chem. Chem. Phys. 5, 5485 (2003)

    Article  Google Scholar 

  13. B. Del’mon, Kinetics of Heterogeneous Reactions (Mir, Moscow, 1972) (In Russian)

    Google Scholar 

  14. A.B. Yaroslavtsev, Yu.A. Dobrovolsky, N.S. Shaglaeva, et al., Uspekhi Khimii, 81, 191 (2012) (In Russian)

    Google Scholar 

  15. N. An, Q. Yu, G. Liu et al., J. Hazard. Mater. 186, 1392 (2011)

    Article  Google Scholar 

  16. N. Ana, P. Wua, S. Lia et al., Appl. Surf. Sci. 285, 805 (2013)

    Article  Google Scholar 

  17. Y. Cao, W. Zhai, X. Zhang, et al., ISRN Nanomater. 7p. (2013)

    Google Scholar 

  18. A.V. Arsatov, YuA Dobrovolsky, Altern. Energ. Ecol. 8, 171 (2009). (In Russian)

    Google Scholar 

  19. M. Mohapatra, S. Anand, Int. Eng. Sci. Technol. 2(8), 127 (2010)

    Google Scholar 

  20. N.A. Shakhbanova, Sol-Gel Technologies. Nano-Dispersive Silica (Binom, Moscow, 2012)

    Google Scholar 

  21. J.R.C. Salgado, J.J. Quintana, L. Calvillo et al., Phys. Chem. Chem. Phys. 10, 6796 (2008)

    Article  Google Scholar 

  22. W. Zhou, J. Wu, H. Yang, Nano Lett. 13, 2870 (2013)

    Article  Google Scholar 

  23. V.E. Guterman, A.Y. Pakharev, N.Y. Tabachkova, Appl. Catal. A 453, 113 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (grants 14-29-04041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Alekseenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Alekseenko, A.A., Guterman, V.E., Volochaev, V.A. (2016). Microstructure Optimization of Pt/C Catalysts for PEMFC. In: Parinov, I., Chang, SH., Topolov, V. (eds) Advanced Materials. Springer Proceedings in Physics, vol 175. Springer, Cham. https://doi.org/10.1007/978-3-319-26324-3_3

Download citation

Publish with us

Policies and ethics