Skip to main content

Automatic Tuning of Computational Models

  • Conference paper
  • First Online:
Simulation and Modeling Methodologies, Technologies and Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 402))

  • 798 Accesses

Abstract

The aim of this paper is to present a methodology for automatic tuning of a computational model, in the context of the development of flight simulators. We will present alternative approaches to automatic parameter ranking and screening, developed in a collaboration between Politecnico di Milano and TXT e-solutions and designed to fit as much as possible the needs of the industry. We will show how the adoption of such techniques can make model tuning more efficient. Although our techniques have been validated against a helicopter simulator case study, they do not rely on any domain-specific feature or assumption, so they can, in principle, be applied in different domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morgan, P.J., Cleave-Hogg, D., Desousa Lam, S., McCulloch, J.: Applying theory to practice in undergraduate education using high fidelity simulation. Med. Teach. 28(1), e10–e15 (2006)

    Article  Google Scholar 

  2. Lewis, J.H., Jiang, S.B.: A theoretical model for respiratory motion artifacts in free-breathing CT scans. Phys. Med. Biol. 54(3), 745–755 (2009)

    Article  Google Scholar 

  3. Kern, S., Muller, S.D., Hansen, N., Büche, D., Ocenasek, J., Koumoutsakos, P.: Learning probability distributions in continuous evolutionary strategies—a comparative review. J. Nat. Comput. 3(1), 77–112 (2004)

    Article  MATH  Google Scholar 

  4. Last, M., Luta, G., Orso, A., Porter, A., Young, S.: Pooled ANOVA. Comput. Stat. Data Anal. 52(12), 5215–5228 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fisher, R.A.: The Design of Experiments, xi 251 pp. Oliver & Boyd, Oxford, England. (1935)

    Google Scholar 

  6. Harrel, F.: Regression Modeling Strategies. Springer-Verlag (2001)

    Google Scholar 

  7. Bishop, C.: Pattern Recognition and Machine Learning, pp. 217–218. Springer Science+Business Media, LLC (2006)

    Google Scholar 

  8. Bettonvil, B., Kleijnen, J.P.C.: Searching for important factors in simulation models with many factors: sequential bifurcation. Eur. J. Oper. Res. 96(1), 180–194 (1997)

    Article  MATH  Google Scholar 

  9. Nelder, J., Wedderburn, R.: Generalized linear models. J Royal Statis Soc Series A (General) 135(3), 370–384 (1972)

    Article  Google Scholar 

  10. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2 edn. Prentice Hall. ISBN 0-13273350-1 (1998)

    Google Scholar 

  11. Bergmeir, C., Benìtez, J.M.: Neural networks in R using the stuttgart neural network simulator: RSNNS. J. Statis. Softw. 46(7) (2012)

    Google Scholar 

  12. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65, 386–408 (1958)

    Article  MathSciNet  Google Scholar 

  13. Cybenko, G.: Approximations by superpositions of sigmoidal functions. Math. Control Signals Syst. 2(4), 303–314 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating

    Google Scholar 

  15. Hessel, M., Borgatelli, F., Ortalli, F.: Machine learning for parameter screening in computer simulations, p. 8906. Springer, Lecture Notes in Computer Science series

    Google Scholar 

  16. Errors. Nature 323 (6088): 533–536. doi:10.1038/323533a0, 1986

    Google Scholar 

  17. Vidal, F.P., Villard, P., Lutton, E.: Automatic tuning of respiratory model for patient-based simulation. MIBISOC’13—International Conference on Medical Imaging using Bio-inspired and Soft Computing (2013)

    Google Scholar 

  18. Zhang, A.: One-factor-at-a-time screening designs for computer experiments. SAE Technical Paper 2007-01-1660. doi:10.4271/2007-01-1660 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Hessel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Hessel, M., Ortalli, F., Borgatelli, F., Lanzi, P.L. (2015). Automatic Tuning of Computational Models. In: Obaidat, M., Ören, T., Kacprzyk, J., Filipe, J. (eds) Simulation and Modeling Methodologies, Technologies and Applications . Advances in Intelligent Systems and Computing, vol 402. Springer, Cham. https://doi.org/10.1007/978-3-319-26470-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26470-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26469-1

  • Online ISBN: 978-3-319-26470-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics