Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 967 Accesses

Abstract

This chapter describes some of the possible modelling approaches for both predicting and controlling the key mechanical properties of Recycled Aggregate Concretes. The chapter is organised in three sections in which the different models applied during the research are described. Particularly, in the last section an innovative modelling methodology is proposed for the case of RAC. The proposed formulations should be considered as a novel conceptual approach capable of considering the key physical and mechanical features characterising the structural behaviour of resulting concrete made out with Recycled Concrete Aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bogue, R. H. (1955). The chemistry of Portland cement. Soil Science, 79(4), 322.

    Article  Google Scholar 

  • D’Aloia, L., & Chanvillard, G. (2002). Determining the “apparent” activation energy of concrete: Ea—numerical simulations of the heat of hydration of cement. Cement and Concrete Research, 32(8), 1277–1289.

    Article  Google Scholar 

  • de Larrard, F. (1999). Concrete mixture proportioning: A scientific approach. New York: CRC Press.

    Google Scholar 

  • de Larrard, F., & Sedran, T. (2007). Le logiciel BétonlabPro 3. Bulletin des laboratoires des ponts et chaussées, 270–271, 75.

    Google Scholar 

  • de Schutter, G., & Taerwe, L. (1996). Degree of hydration-based description of mechanical properties of early age concrete. Materials and Structures, 29(6), 335–344.

    Article  Google Scholar 

  • EN 197-1:2011. Cement—Part 1: Composition, specifications and conformity criteria for common cements. CEN, European Committee for Standardization.

    Google Scholar 

  • Feret, R. (1892). On the compactness of the mortars. Annales des Ponts et Chaussées, Série, 7(4), 5–164.

    Google Scholar 

  • Kada-Benameur, H., Wirquin, E., & Duthoit, B. (2000). Determination of apparent activation energy of concrete by isothermal calorimetry. Cement and Concrete Research, 30(2), 301–305.

    Article  Google Scholar 

  • Koenders, E. A. B. (2005). Mix design for Venice barriers. Report Nr. 15.5-05-08, Confidential communication.

    Google Scholar 

  • Lilliu, G., & van Mier, J. G. (2003). 3D lattice type fracture model for concrete. Engineering Fracture Mechanics, 70(7), 927–941.

    Article  Google Scholar 

  • Lokhorst, S.J. (1999). Deformation behavior of concrete influenced by hydration related changes of the microstructure. Internal Report Nr. 5-99-05, Delft University of Technology (The Netherlands).

    Google Scholar 

  • Martinelli, E., Koenders, E. A., & Caggiano, A. (2013). A numerical recipe for modelling hydration and heat flow in hardening concrete. Cement & Concrete Composites, 40, 48–58.

    Article  Google Scholar 

  • Narasimhan, T. N. (1999). Fourier’s heat conduction equation: History, influence, and connections. Reviews of Geophysics, 37(1), 151–172.

    Article  Google Scholar 

  • Neville, A. M. (1981). Properties of concrete. London: Pitman Publishing Ltd.

    Google Scholar 

  • Qian, Z., Schlangen, E., Ye, G., & van Breugel, K. (2011). 3D lattice fracture model: Theory and computer implementation. Key Engineering Materials, 452, 69–72.

    Google Scholar 

  • Schlangen, E., & Van Mier, J. G. M. (1992). Simple lattice model for numerical simulation of fracture of concrete materials and structures. Materials and Structures, 25(9), 534–542.

    Article  Google Scholar 

  • Schlangen, E., & Garboczi, E. J. (1997). Fracture simulations of concrete using lattice models: Computational aspects. Engineering Fracture Mechanics, 57(2), 319–332.

    Article  Google Scholar 

  • Sedran, T., & de Larrard, F. (1994). RENE-LCPC–Un logiciel pour optimiser la granularité des matériaux de Génie Civil. Bulletin des Laboratoires des Ponts et Chaussées, 194, 87–93.

    Google Scholar 

  • Stovall, T., de Larrard, F., & Buil, M. (1986). Linear packing density model of grain mixtures. Powder Technology, 48(1), 1–12.

    Article  Google Scholar 

  • van Breugel, K. (1991). Simulation of hydration and formation of structure in hardening cement-based materials. Ph.D. thesis, Delft University of Technology (The Netherlands).

    Google Scholar 

  • van Breugel, K. (2004). Concrete structures under temperature and shrinkage deformations. Lecture notes CT5120, Delft University of Technology, The Netherlands.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Pepe .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pepe, M. (2015). Predicting the Mechanical Properties of RAC. In: A Conceptual Model for Designing Recycled Aggregate Concrete for Structural Applications. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-26473-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26473-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26472-1

  • Online ISBN: 978-3-319-26473-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics