Skip to main content

Physarum Learner: A Slime Mold Inspired Structural Learning Approach

  • Chapter
  • First Online:
Advances in Physarum Machines

Part of the book series: Emergence, Complexity and Computation ((ECC,volume 21))

  • 1338 Accesses

Abstract

A novel Score-based Physarum Learner algorithm for learning Bayesian Network structure from data is introduced and shown to outperform common score based structure learning algorithms for some benchmark data sets. The Score-based Physarum Learner first initializes a fully connected Physarum-Maze with random conductances. In each Physarum Solver iteration, the source and sink nodes are changed randomly, and the conductances are updated. Connections exceeding a predefined conductance threshold are considered as Bayesian Network edges, and the score of the connected nodes are examined in both directions. A positive or negative feedback is given to the edge conductance based on the calculated scores. Due to randomness in selecting connections for evaluation, an ensemble of Score-based Physarum Learner is used to build the final Bayesian Network structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramovici, M., Neubach, M., Fathi, M., Holland, A.: Competing fusion for bayesian applications. In: 12th Information Processing And Management Of Uncertainty In Knowledge-based Systems, pp. 378–385 (2008)

    Google Scholar 

  2. Beinlich, I.A., Suermondt, H.J., Chavez, R.M., Cooper, G.F.: The ALARM monitoring system: a case study with two probabilistic inference Techniques for belief networks. In: Proceedings 2nd European Conference on Artificial Intelligence in Medicine, pp. 247–256. Springer (1989)

    Google Scholar 

  3. Bouchaala, L., Masmoudi, A., Gargouri, F., Rebai, A.: Improving algorithms for structure learning in Bayesian networks using a new implicit score. Expert Syst. Appl. 37, 54705475 (2010)

    Article  Google Scholar 

  4. Brummitt, Ch, Laureyns, I., Lin, T., Martin, D., Parry, D., Timmers, D., Volfson, A., Yang, T., Yaple, H., Rossi, M.L.: A mathematical study of physarum polycephalum. In: The Tero Model, pp. 1–24 (2010)

    Google Scholar 

  5. Cooper, G.F., Herskovits, E.: A Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 9(4), 309–347 (1992)

    MATH  Google Scholar 

  6. Glover, F.: Tabu search: a tutorial. Interfaces 20(4), 74–94 (1990)

    Article  Google Scholar 

  7. Glover, F., McMillan, C.: The general employee scheduling problem: an integration of MS and AI. Comput. Oper. Res. (1986)

    Google Scholar 

  8. Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian networks: The combination of knowledge and statistical data. Mach. Learn. 20(3), 197–243 (1995)

    MATH  Google Scholar 

  9. Holland, A., Fathi, M., Abramovici, M., Neubach, M.: Competing fusion for Bayesian applications. In: Proceedings 12th International Conference Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2008), pp. 378–385, Malaga, Spain (2008)

    Google Scholar 

  10. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Koivisto, M., Sood, K.: Exact Bayesian structure discovery in Bayesian networks. J. Mach. Learn. Res. 5, 549–573 (2004)

    MathSciNet  MATH  Google Scholar 

  12. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. The MIT Press (2009)

    Google Scholar 

  13. Korb, K., Nicholson, A.: Bayesian Artificial Intelligence, 2nd edn. Chapman and Hall (2010)

    Google Scholar 

  14. Lam, W., Bacchus, F.: Learning Bayesian belief networks: an approach based on the MDL principle. Comput. Intell. 10(3), 269–293 (1994)

    Article  Google Scholar 

  15. Lauritzen, S.L., Spiegelhalter, D.J.: Local computation with probabilities on graphical structures and their application to expert systems. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 50(2), 157–224 (1988)

    MathSciNet  MATH  Google Scholar 

  16. Lin, S., Kernighan, B.W.: An effective heuristic for the traveling salesman problem. Oper. Res. 21, 498–516 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  17. Miyaji, T., Ohnishi, I.: Mathematical analysis to an adaptive network of the Plasmodium system. Hokkaido Math. J. 36(2), 245–465 (2007)

    Article  MathSciNet  Google Scholar 

  18. Miyaji, T., Ohnishi, I.: Physarum can solve the shortest path problem on Riemannian surface mathematically rigorously. Int. J. Pure Appl. Math. 47(3), 353–369 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Nakagaki, T., Tero, A., Kobayashi, R., Ohnishi, I., Miyaji, T.: Computational ability of cells based on cell dynamics and adaptability. New Gener. Comput. 27, 57–81 (2009)

    Article  MATH  Google Scholar 

  20. Nakagaki, T., Yamada, H., Toth, A.: Intelligence: Maze-solving by an amoeboid organism. Nature 407(6803), 470 (2000)

    Article  Google Scholar 

  21. Parviainen, P., Koivisto, M.: Exact structure discovery in Bayesian networks with less space. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI ’09, pp. 436–443 (2009)

    Google Scholar 

  22. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, 2nd edn. Morgan Kaufmann, San Francisco (1988)

    MATH  Google Scholar 

  23. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipies in C. Cambridge University Press (2002)

    Google Scholar 

  24. Schoen, T., Stetter, M., Lang, E.W.: Structure learning for Bayesian networks using the physarum solver. In: Proceedings 11th International Conference Machine Learning and Applications, ICMLA 2012, pp. 488–493. IEEE XPlore (2012)

    Google Scholar 

  25. Schoen, T., Stetter, M., Lang, E.W.: A new Physarum learner for network structure learning from biomedical data. In: Proceedings 6th International Conference Bio-inspired Systems and Signal Processing 2013 (2013)

    Google Scholar 

  26. Schoen, T., Stetter, M., Tomé, A.M., Puntonet, C.G., Lang, E.W.: Physarum learner: a bio-inspired way of learning structure from data. Expert Syst. Appl. 41(11), 5353–5370 (2014)

    Article  Google Scholar 

  27. Sohier, Devan, Georgiadis, Giorgos, Clavière, Simon, Papatriantafilou, Marina, Bui, Alain: Physarum-inspired self-biased walkers for distributed clustering. In: Baldoni, Roberto, Flocchini, Paola, Binoy, Ravindran (eds.) OPODIS 2012. LNCS, vol. 7702, pp. 315–329. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  28. Tero, A., Kobayashi, R., Nakagaki, T.: Physarum solver: a biologically inspired method of road-network navigation. Physica A 363(1), 115–119 (2006)

    Article  Google Scholar 

  29. Tero, A., Kobayashi, R., Nakagaki, T.: A mathematical model for adaptive transport network in path finding by true slime mold. J. Theo. Biol. 244(4), 553–564 (2007)

    Article  MathSciNet  Google Scholar 

  30. Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, D.P., Fricker, M.D., Yumiki, K., Kobayashi, R., Nakagaki, T.: Rules for biologically inspired adaptive network design. Science 327(5964), 439–442 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tero, A., Yumiki, K., Kobayashi, R., Saigusa, T., Nakagaki, T.: Flow-network adaptation in Physarum amoebae. Theory Biosci. 127(2), 89–94 (2008)

    Article  Google Scholar 

  32. Zhang, X., Liu, Q., Hu, Y., Chan, F.T.S., Mahadevan, S., Zhang, Z., Deng, Y.: An adaptive amoeba algorithm for shortest path tree computation in dynamic graphs (2013). arXiv:1311.0460 [cs.NE]

  33. Zhang, X., Zhang, Y., Hu, Y., Deng, Y., Mahadevan, S.: An adaptive amoeba algorithm for constrained shortest paths. Expert Syst. Appl. 40(18), 7607–7616 (2013)

    Article  Google Scholar 

  34. Zhang, Y., Zhang, Z., Wei, D., Deng, Y.: Centrality measure in weighted networks based on an amoeboid algorithm. J. Inf. Comput. Sci. 9(2), 369–376 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. W. Lang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schön, T., Stetter, M., Belova, O., Koch, A., Tomé, A.M., Lang, E.W. (2016). Physarum Learner: A Slime Mold Inspired Structural Learning Approach. In: Adamatzky, A. (eds) Advances in Physarum Machines. Emergence, Complexity and Computation, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-26662-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26662-6_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26661-9

  • Online ISBN: 978-3-319-26662-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics