Skip to main content

Neuronal “Op-amps” Implement Adaptive Control in Biology and Robotics

  • Chapter
  • First Online:
Human and Robot Hands

Part of the book series: Springer Series on Touch and Haptic Systems ((SSTHS))

  • 1586 Accesses

Abstract

Animals control their limbs very efficiently using interconnected neuronal populations. We propose that these populations can be seen as general-purpose neuronal operational amplifiers, or neuronal “op-amps”, forming adaptive feedback networks. The neuronal op-amp is an interdisciplinary concept offering tentative explanations of animal behaviour as well as approaches to biologically inspired high-dimensional robot control. For instance, in biology, the concept indicates the origin of synergies and saliency in the mammalian central nervous system; in robotics, it presents a design of simple but robust adaptive controllers that identify unknown sensors online. Here, we introduce the neuronal op-amp concept and its biological basis. We explore its biological plausibility, its application, and its performance in adaptive control both theoretically and experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arduino Organization http://www.arduino.cc: Arduino Uno Data Sheet (2012). http://arduino.cc/en/Main/ArduinoBoardUno. Accessed 5 March 2012

  2. Ben-Israel A, Greville TNE (2003) Generalized Inverses: theory and applications, 2nd edn. Springer, New York

    Google Scholar 

  3. Cash S, Yuste R (1999) Linear summation of excitatory inputs by CA1 pyramidal neurons. Neuron 22:383-394. doi:10.1016/S0896-6273(00)81098-3

    Google Scholar 

  4. Chater TE, Goda Y (2014) The role of AMPA receptors in postsynaptic mechanisms of synaptic plasticity. Front Cell Neurosci 8:1-14. doi:10.3389/fncel.2014.00401

  5. Craver CF (2006) When mechanistic models explain. Synthese 153:355-376. doi:10.1007/s11229-006-9097-x

    Google Scholar 

  6. Datta A (1998) Adaptive internal model control. Springer, London

    Google Scholar 

  7. Doyle JC (1978) Guaranteed margins for LQG regulators. IEEE Trans autom control 23(4):756-757. doi:10.1109/TAC.1978.1101812

    Google Scholar 

  8. Frank, PM (1974) Entwurf von Regelkreisen mit vorgeschriebenem Verhalten. G Braun

    Google Scholar 

  9. Friston K, Kilner J, Harrison L (2006) Free energy principle for the brain. J Physiol Paris 100:70-87. doi:10.1016/j.jphysparis.2006.10.001

    Google Scholar 

  10. Fujita M (1982) Adaptive filter model of the cerebellum. Biol Cybern 45(3):195-206. doi:10.1007/BF00336192

    Google Scholar 

  11. Gilbert CD, Li W (2013) Top-down influences on visual processing. Nature Rev Neurosci 14:350-363. doi:10.1038/nrn3476

    Google Scholar 

  12. Glad T, Ljung L (2000) Control theory: multivariable and nonlinear methods. Taylor & Francis, London

    Google Scholar 

  13. Gray H (1918) Anatomy of the human body. Lea and Febiger, Philadelphia, USA

    Google Scholar 

  14. Haykin SS, Widrow B (eds) (2003) Least-mean-square adaptive filters. John Wiley, Hoboken, NJ

    Google Scholar 

  15. Ito M (1984) The cerebellum and neural control. Raven Press, New York

    Google Scholar 

  16. Johansson RS, Vallbo ÅB (1979) Tactile sensibility in the human hand: relative and absolute densities of four types of mechanoreceptive units in glabrous skin. J Physiol 286:283-300. doi:10.1113/jphysiol.1979.sp012619

    Google Scholar 

  17. Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9(6):718-727. doi:10.1016/S0959-4388(99)00028-8

    Google Scholar 

  18. Kohonen T (1977) Associative Memory: a system-theoretical approach. Springer, Berlin

    Google Scholar 

  19. Melexis microelectronic systems, Ieper, Belgium: Melexis MLX 90316 Data sheet (2012). http://www.melexis.com/Assets/MLX90316-DataSheet-4834.aspx

  20. Morari M, Zafiriou E (1989) Robust process control. Prentice Hall, Englewood Cliffs

    Google Scholar 

  21. Porrill J, Dean P, Anderson SR (2013) Adaptive filters and internal models:multilevel description of cerebellar function. Neural Networks 47:134–149. doi:10.1016/j.neunet.2012.12.005

    Google Scholar 

  22. Proakis J, Manolakis D (2007) Digital signal processing, 4th edn. Pearson Education, Prentice Hall

    Google Scholar 

  23. Santello M, Baud-Bovy G, Jörntell H (2013) Neural bases of hand synergies. Front Comput Neurosci 7(23):1-15. doi:10.3389/fncom.2013.00023

  24. Santello M, Flanders M, Soechting JF (2002) Patterns of hand motion during grasping and the influence of sensory guidance. J Neurosci 2(4):1426-1435 http://www.jneurosci.org/content/22/4/1426.long

    Google Scholar 

  25. Scholz JP, Schöner G (1999) The uncontrolled manifold concept: identifying control variables for a functional task. Exp Brain Res 126(3):289-306. doi:10.1007/s002210050738

    Google Scholar 

  26. SIMULINK manual (2012) Mathworks Inc, Natick MA, USA. http://www.mathworks.se/help/toolbox/simulink/

  27. Spanne A, Geborek P, Bengtsson F, Jörntell H (2014) Spike generation estimated from stationary spike trains in a variety of neurons in vivo. Front Cell Neurosci 8:1-15. doi:10.3389/fncel.2014.00199

  28. Stout DF, Kaufman M (1976) In: Handbook of operational amplifier circuit design. McGraw-Hill, New York

    Google Scholar 

  29. van Polanen V, Tiest WMB, Kappers AML (2012) Haptic search for hard and soft spheres. PLOS One 7(10):1-10. doi:10.1371/journal.pone.0045298

    Google Scholar 

  30. Walter JT, Khodakhah K (2006) The linear computational algorithm of cerebellar Purkinje cells. J Neurosci 26:12861-12872. doi:10.1523/JNEUROSCI.4507-05.2006

    Google Scholar 

  31. Wiener N (1948) Cybernetics, or control and communication in the animal and the machine. MIT Press, Cambridge, MA

    Google Scholar 

Download references

Acknowledgments

The author thanks the THE project partners and reviewers for many inspirational interdisciplinary discussions across the robotics and neuroscience camps, and is especially grateful for support by Dr. Henrik Jörntell at the Department of Experimental Medical Science, Lund University. The author is grateful to Prof. Rolf Johansson at the Department of Automatic Control, Lund University, who introduced him to the fascinating field of adaptive control. This research was funded by the European Union FP7 research project THE, “The Hand Embodied”, under grant agreement 248587.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Nilsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nilsson, M. (2016). Neuronal “Op-amps” Implement Adaptive Control in Biology and Robotics. In: Bianchi, M., Moscatelli, A. (eds) Human and Robot Hands. Springer Series on Touch and Haptic Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-26706-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26706-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26705-0

  • Online ISBN: 978-3-319-26706-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics