Skip to main content

Bone Response to Implants

  • Chapter
  • First Online:
Evidence-Based Implant Dentistry
  • 1951 Accesses

Abstract

A successful implant treatment presupposes an effective osseointegration, which is the direct apposition of bone to the implant surface. The implant surface plays a huge role in the bone response leading to osseointegration. For this reason, evaluation of chemical and physical characteristics is considered important in order to choose the best implant and obtain optimal clinical results. Although it is not clear which specific surface confers a true advantage, there is a general consensus that a roughened surface gives better results compared to machined one.

Bone remodeling after extraction may have an influence on the implant treatment planning and clinical results. Finally, optimal osseointegration mechanisms, good primary stability, and high bone-to-implant contact (BIC) should guarantee the best results at long term.

A relatively recent technology, the piezoelectric surgery, which has the best cutting efficiency on mineralized tissue without overheating the bone, may contribute to reduce the bone trauma before implant placement. Also, it can aid in inserting the implants in difficult clinical situations like the contiguity to delicate structures such as the inferior alveolar nerve or the maxillary sinus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Albrektsson, A. Wennerberg, Oral implant surfaces: part 1–review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. Int. J. Prosthodont. 17, 536–543 (2004)

    PubMed  Google Scholar 

  2. R. Junker, A. Dimakis, M. Thoneick, J.A. Jansen, Effects of implant surface coatings and composition on bone integration: a systematic review. Clin. Oral Implants Res. 20, 185–206 (2009)

    Article  PubMed  Google Scholar 

  3. D.M. Dohan Ehrenfest, P.G. Coelho, B.S. Kang, Y.T. Sul, T. Albrektsson, Classification of osseointegrated implant surfaces: materials, chemistry and topography. Trends Biotechnol. 28, 198–206 (2010)

    Article  PubMed  Google Scholar 

  4. C.N. Eliasa, F.A. Rocha, A.L. Nascimento, P.G. Coelho, Influence of implant shape, surface morphology, surgical technique and bone quality on the primary stability of dental implants. J. Mech. Behav. Biomed. Mater. 16, 169–180 (2012)

    Article  Google Scholar 

  5. A. Wennerberg, T. Albrektsson, On implant surfaces: a review of current knowledge and opinions. Int. J. Oral Maxillofac. Implants 25, 63–74 (2009)

    Google Scholar 

  6. B. Bhushan. Princ. Appl. Tribol., 2nd ed., Wiley, New York, NY, pp.181–269 (2013)

    Google Scholar 

  7. M.M. Shalabi, A. Gortemaker, M.A. Van’t Hof, J.A. Jansen, N.H. Creugers. Implant surface roughness and bone healing: a systematic review. J Dent Res. 85, 496–500 (2006)

    Google Scholar 

  8. M. Aljateeli, H.L. Wang, Implant microdesigns and their impact on osseointegration. Implant Dent. 22, 127–132 (2013)

    Article  PubMed  Google Scholar 

  9. A. Barfeie, J. Wilson, J. Rees, Implant surface characteristics and their effect on osseointegration. Bdj. 218, E9–E9 (2015)

    Google Scholar 

  10. I. Abrahamsson, T. Berglundh, Effects of different implant surfaces and designs on marginal bone-level alterations: a review. Clin. Oral Implants Res. 20, 207–215 (2009)

    Article  PubMed  Google Scholar 

  11. S. Renvert, I. Polyzois, N. Claffey, How do implant surface characteristics influence periimplant disease? J. Clin. Periodontol. 38, 214–222 (2011)

    Article  PubMed  Google Scholar 

  12. J. Mouhyi, D.M. Dohan Ehrenfest, T. Albrektsson, The peri-implantitis: implant surfaces, microstructure, and physicochemical aspects. Clin. Implant Dent. Relat. Res. 14, 170–183 (2012)

    Article  PubMed  Google Scholar 

  13. A. Apratim, Zirconia in dental implantology: a review. J. Int. Soc. Prev. Community Dent. 5, 147 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  14. H.J. Wenz, J. Bartsch, S. Wolfart, M. Kern, Osseointegration and clinical success of zirconia dental implants: a systematic review. Int. J. Prosthodont. 21, 27–36 (2008)

    PubMed  Google Scholar 

  15. Z. Özkurt, E. Kazazoğlu, Zirconia dental implants: a literature review. J. Oral Implantol. 37, 367–376 (2011)

    Article  PubMed  Google Scholar 

  16. A. Monje, H.L. Chan, P. Galindo-Moreno, B. Elnayef, F. Suarez Lopez del amo, F. Wang, H.L. Wang, Alveolar bone architecture: a systematic review and meta-analysis. J. Periodontol. 86, 1–31 (2015). – epub ahead of print

    Article  Google Scholar 

  17. F. Van Der Weijden, F. Dell’Acqua, D.E. Slot, Alveolar bone dimensional changes of post-extraction sockets in humans: a systematic review. J. Clin. Periodontol. 36, 1048–1058 (2009)

    Article  PubMed  Google Scholar 

  18. W.L. Tan, T.L.T. Wong, M.C.M. Wong, N.P. Lang, A systematic review of post-extractional alveolar hard and soft tissue dimensional changes in humans. Clin. Oral Implants Res. 23, 1–21 (2012)

    Article  PubMed  Google Scholar 

  19. M. Caneva, L.A. Salata, S.S. de Souza, G. Baffone, N.P. Lang, D. Botticelli, Influence of implant positioning in extraction sockets on osseointegration: histomorphometric analysis in dogs. Clin. Oral Implants Res. 21, 43–49 (2010)

    Article  PubMed  Google Scholar 

  20. C.T. Lee, T.S. Chiu, S.K. Chuang, D. Tarnow, J. Stoupel, Alterations of the bone dimension following immediate implant placement into extraction socket: systematic review and meta-analysis. J. Clin. Periodontol. 9, 914–926 (2014)

    Article  Google Scholar 

  21. C.H.F. Hämmerle, M.G. Araújo, M. Simion, Evidence-based knowledge on the biology and treatment of extraction sockets. Clin. Oral Implants Res. 23, 80–82 (2012)

    Article  PubMed  Google Scholar 

  22. C. Tomasi et al., Bone dimensional variations at implants placed in fresh extraction sockets: a multilevel multivariate analysis. Clin. Oral Implants Res. 21, 30–36 (2010)

    Article  PubMed  Google Scholar 

  23. A. Ma, A. Nhm, P. Agt, W. Duncan, M. Esposito, Interventions for replacing missing teeth : alveolar ridge preservation techniques for oral implant site development. Chocrane Database of Systematic Reviews of Interventions. (2012).

    Google Scholar 

  24. G. Vittorini Orgeas, M. Clementini, V. De Risi, M. de Sanctis, Surgical techniques for alveolar socket preservation: a systematic review. Int. J. Oral Maxillofac. Implants 28, 1049–1061 (2013)

    Article  PubMed  Google Scholar 

  25. G. Avila-Ortiz, S. Elangovan, K.W.O. Kramer, D. Blanchette, D.V. Dawson, Effect of alveolar ridge preservation after tooth extraction: a systematic review and meta-analysis. J. Dent. Res. 93, 950–959 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  26. M. Willenbacher, B. Al-Nawas, M. Berres, P. W Kämmerer, E. Schiegnitz, The effects of alveolar ridge preservation: a meta-analysis. Clin. Implant Dent. Relat. Res. epub ahead of print

    Google Scholar 

  27. S. Jambhekar, F. Kernen, A.S. Bidra, Clinical and Histologic outcomes of socket grafting after flapless tooth extraction: a systematic review of randomized controlled clinical trials. J. Prosthet. Dent. 113, 371–382 (2015)

    Article  PubMed  Google Scholar 

  28. J.G. De Buitrago, G. Avila-Ortiz, S. Elangovan, Quality assessment of systematic reviews on alveolar ridge preservation. J. Am. Dent. Assoc. 144, 1349–1357 (2013)

    Article  PubMed  Google Scholar 

  29. L. Ev, R.A. Uj, Alveolar socket healing: what can we learn? Periodontol. 2000 68, 122–134 (2015)

    Article  Google Scholar 

  30. D. Weng, V. Stock, H. Schliephake, Are socket and ridge preservation techniques at the day of tooth extraction efficient in maintaining the tissues of the alveolar ridge? Eur. J. Oral Implantol. 4, 59–66 (2011)

    Google Scholar 

  31. G. Agarwal, R. Thomas, D. Mehta, Postextraction maintenance of the alveolar ridge: rationale and review. Compend. Contin. Educ. Dent. 33, 320–324 (2012). 326; quiz 327, 336 ST – Postextraction mai

    PubMed  Google Scholar 

  32. A. Horváth, N. Mardas, L.A. Mezzomo, I.G. Needleman, N. Donos, Alveolar ridge preservation. A systematic review. Clin. Oral Investig. 17, 341–363 (2013)

    Article  PubMed  Google Scholar 

  33. I. Abrahamsson, T. Berglundh, E. Linder, N.P. Lang, J. Lindhe, Early bone formation adjacent to rough and turned endosseous implant surfaces. An experimental study in the dog. Clin. Oral Implants Res. 15, 381–392 (2004)

    Article  PubMed  Google Scholar 

  34. N. Donos, M. Retzepi, I. Wall, S. Hamlet, S. Ivanovski, In vivo gene expression profile of guided bone regeneration associated with a microrough titanium surface. Clin. Oral Implants Res. 22, 390–398 (2011)

    Article  PubMed  Google Scholar 

  35. M.R. Khan, N. Donos, V. Salih, P.M. Brett, The enhanced modulation of key bone matrix components by modified Titanium implant surfaces. Bone 50, 1–8 (2012)

    Article  PubMed  Google Scholar 

  36. L. Le Guéhennec, A. Soueidan, P. Layrolle, Y. Amouriq, Surface treatments of titanium dental implants for rapid osseointegration. Dent. Mater. 23, 844–854 (2007)

    Article  PubMed  Google Scholar 

  37. V. Dhinakarsamy, R. Jayesh, Osseointegration. J. Pharm. Bioallied Sci. 7, 228 (2015)

    Article  Google Scholar 

  38. M. Gasik, A. Braem, A. Chaudhari, J. Duyck, J. Vleugels, Titanium implants with modified surfaces: meta-analysis of in vivo osseointegration. Mater. Sci. Eng. C 49, 152–158 (2015)

    Article  Google Scholar 

  39. F. Javed, H.B. Ahmed, R. Crespi, G.E. Romanos, Role of primary stability for successful osseointegration of dental implants: factors of influence and evaluation. Interv. Med. Appl. Sci. 5, 162–167 (2013)

    PubMed  PubMed Central  Google Scholar 

  40. F. Javed, G.E. Romanos, The role of primary stability for successful immediate loading of dental implants. A literature review. J. Dent. 38, 612–620 (2010)

    Article  PubMed  Google Scholar 

  41. L.R. Walker, G.A. Morris, P.J. Novotny, Implant insertional torque values predict outcomes. J. Oral Maxillofac. Surg. 69, 1344–1349 (2011)

    Article  PubMed  Google Scholar 

  42. N. Meredith, Assessment of implant stability as a prognostic determinant. Int. J. Prosthodont. 11, 491–501 (1998)

    PubMed  Google Scholar 

  43. U. Lekholm, G.A. Zarb, in Patient Selection and Preparation, ed. by P.I. Branemark, G..A. Zarb, T. Albrektsson. Tissue integrated prostheses: osseointegration in clinical dentistry (Hannover Park, IL: Quintessence Publishing Company, 1985), pp. 199–209

    Google Scholar 

  44. M. Marquezan, A. Osório, E. Sant’Anna, M.M. Souza, L. Maia, Does bone mineral density influence the primary stability of dental implants? a systematic review. Clin. Oral Implants Res. 23, 767–774 (2012)

    Article  PubMed  Google Scholar 

  45. L. Molly, Bone density and primary stability in implant therapy. Clin. Oral Implants Res. 17, 124–135 (2006)

    Article  PubMed  Google Scholar 

  46. R.M. Shadid, N.R. Sadaqah, S.A. Othman, Does the implant surgical technique affect the primary and/or secondary stability of dental implants? a systematic review. Int. J. Dent. 2014(204838) (2014)

    Google Scholar 

  47. M.C. Goiato, D.M. dos Santos, J.F. Santiago, A. Moreno, E.P. Pellizzer, Longevity of dental implants in type IV bone: a systematic review. Int. J. Oral Maxillofac. Surg. 43, 1108–1116 (2014)

    Article  PubMed  Google Scholar 

  48. E. Sag et al., Comparative assessments, meta-analysis, and recommended guidelines for reporting studies on histomorphometric bone-implant contact in humans. Int. J. Oral Maxillofac. Implants 28, 1243–1253 (2013)

    Article  Google Scholar 

  49. H.M. Frost, Bone’s mechanostat: a 2003 update. Anat. Rec. 275A, 1081–1101 (2003)

    Article  Google Scholar 

  50. M. Chang, V. Chronopoulos, N. Mattheos, Impact of excessive occlusal load on successfully-osseointegrated dental implants: a literature review. J. Investig. Clin. Dent. 4(3), 142–150 (2013)

    Article  PubMed  Google Scholar 

  51. L.J. Heitz-Mayifiled, B. Schmid, C. Weigel, S. Gerber, D.D. Bosshardt, J. Jonsson, N.P. Lang, J. Jonsson, Does excessive occlusal load affect osseointegration? an experimental study in the dog. Clin. Oral Implants Res. 15, 259–268 (2004)

    Article  Google Scholar 

  52. F. Isidor, Influence of forces on peri-implant bone. Clin. Oral Implants Res. 17(suppl), 8–18 (2006)

    Article  PubMed  Google Scholar 

  53. I. Naert, J. Duyck, K. Vandamme, Occlusal overload and bone/implant loss. Clin. Oral Implants Res. 23, 95–107 (2012)

    Article  PubMed  Google Scholar 

  54. B.R. Chrcanovic, M.D. Martins, A. Wennerberg, Immediate placement of implants into infected sites: a systematic review. Clin. Implant Dent. Relat. Res. 17, e1–e16 (2013)

    Article  PubMed  Google Scholar 

  55. A.B. Novaes, A.M. Marcaccini, S.L. Souza, M. Taba, M.F. Grisi, Immediate placement of implants into periodontally infected sites in dogs: a histomorphometric study of bone-implant contact. Int. J. Oral Maxillofac. Implants 18, 391–398 (2003)

    PubMed  Google Scholar 

  56. R. Palmer, Evidence for survival of implants placed into infected sites is limited. J. Evid. Based Dent. Pract. 12, 187–188 (2012)

    Article  PubMed  Google Scholar 

  57. J.A. Waasdorp, C.I. Evian, M. Mandracchia, Immediate placement of implants into infected sites: a systematic review of the literature. J. Periodontol. 81, 801–808 (2010)

    Article  PubMed  Google Scholar 

  58. J. Jofre, D. Valenzuela, P. Quintana, C. Asenjo-Lobos, Protocol for immediate implant replacement of infected teeth. Implant Dent. 21, 287–294 (2012)

    Article  PubMed  Google Scholar 

  59. J.C. Álvarez-Camino, E. Valmaseda-Castellón, C. Gay-Escoda, Immediate implants placed in fresh sockets associated to periapical infectious processes. a systematic review. Med. Oral Patol. Oral Cir. Bucal 18(5), e780–e785 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  60. I. Sanz, Surgical protocols for early implant placement in post-extraction sockets: a systematic review. Clin. Oral Implants Res. 23, 67–79 (2012)

    Article  PubMed  Google Scholar 

  61. M. Labanca, F. Azzola, R. Vinci, L.F. Rodella, Piezoelectric surgery: twenty years of use. Br. J. Oral Maxillofac. Surg. 46, 265–269 (2008)

    Article  PubMed  Google Scholar 

  62. T. Vercellotti et al., Osseous response following resective therapy with piezosurgery. Int. J. Periodontics Restor. Dent. 25, 543–549 (2005)

    Google Scholar 

  63. N. Saulacic, D.D. Bosshardt, S.S. Jensen, R.J. Miron, R. Gruber, D. Buser, Impact of bone graft harvesting techniques on bone formation and graft resorption: a histomorphometric study in the mandible of minipigs. Clin. Oral Implants Res. 26, 383–391 (2015)

    Article  PubMed  Google Scholar 

  64. C. Stacchi, T. Vercellotti, L. Torelli, F. Furlan, R. Di Lenarda, Changes in implant stability using different site preparation techniques: twist drills versus piezosurgery. A single-blinded, randomized, controlled clinical trial. Clin. Implant Dent. Relat. Res. 15, 188–197 (2013)

    Article  PubMed  Google Scholar 

  65. G. Pavlíková et al., Piezosurgery in oral and maxillofacial surgery. Int. J. Oral Maxillofac. Surg. 40, 451–457 (2011)

    Article  PubMed  Google Scholar 

  66. C.C.S. Pereira, W.C. Gealh, L. Meorin-Nogueira, I.R. Garcia-Júnior, R. Okamoto, Piezosurgery applied to implant dentistry: clinical and biological aspects. J. Oral Implantol. 40, 401–408 (2014)

    Article  PubMed  Google Scholar 

  67. M. Schlee, M. Steigmann, E. Bratu, A.K. Garg, Piezosurgery: basics and possibilities. Implant Dent. 15(4), 334–340 (2006)

    Article  PubMed  Google Scholar 

  68. M. Donati, D. Botticelli, V. La Scala, C. Tomasi, T. Berglundh, Effect of immediate functional loading on osseointegration of implants used for single tooth replacement. A human histological study. Clin. Oral Implants Res. 24, 738–745 (2013)

    Article  PubMed  Google Scholar 

  69. R.B. Osman et al., Fractured zirconia implants and related implant designs: scanning electron microscopy analysis. Clin. Oral Implants Res. 24, 592–597 (2013)

    Article  PubMed  Google Scholar 

  70. M.G. Araújo, J. Lindhe, Dimensional ridge alterations following tooth extraction. An experimental study in the dog. J. Clin. Periodontol. 32, 212–218 (2005)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oreste Iocca DDS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Iocca, O. (2016). Bone Response to Implants. In: Iocca, O. (eds) Evidence-Based Implant Dentistry. Springer, Cham. https://doi.org/10.1007/978-3-319-26872-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26872-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26870-5

  • Online ISBN: 978-3-319-26872-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics