Skip to main content

Site-Directed Spin Labeling for EPR Studies of Nucleic Acids

  • Chapter
  • First Online:
Modified Nucleic Acids

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 31))

Abstract

Electron paramagnetic resonance (EPR) spectroscopy has emerged as a valuable technique to study the structure and dynamics of nucleic acids and their complexes with other biomolecules. EPR studies require incorporation of stable free radicals (spin labels), usually aminoxyl radicals (nitroxides), at specific sites in the nucleic acids using site-directed spin labeling (SDSL). In addition to the advancement of EPR instrumentation and pulsed EPR techniques, new strategies for SDSL have emerged, in particular, use of click chemistry, biopolymer catalysis, and noncovalent labeling. Furthermore, tailor-made spin labels with improved stability and spectroscopic properties have evolved, such as rigid spin labels that allow determination of accurate distances in addition to orientations between two spin labels. This chapter gives an overview of nucleic acids spin labeling using the three main strategies of SDSL, namely spin labeling during oligonucleotide synthesis, post-synthetic-, and noncovalent labeling. The spin-labeling methods have been categorized according to the labeling site.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cech TR (1990) Self-splicing of group I introns. Annu Rev Biochem 59:543–568

    Article  CAS  PubMed  Google Scholar 

  2. Doherty EA, Doudna JA (2000) Ribozyme structures and mechanisms. Annu Rev Biochem 69:597–615

    Article  CAS  PubMed  Google Scholar 

  3. Fedor MJ, Williamson JR (2005) The catalytic diversity of RNAs. Nat Rev Mol Cell Biol 6(5):399–412

    Article  CAS  PubMed  Google Scholar 

  4. Steitz TA (2008) A structural understanding of the dynamic ribosome machine. Nat Rev Mol Cell Biol 9(3):242–253

    Article  CAS  PubMed  Google Scholar 

  5. Fica SM, Tuttle N, Novak T, Li NS, Lu J, Koodathingal P, Dai Q, Staley JP, Piccirilli JA (2013) RNA catalyses nuclear pre-mRNA splicing. Nature 503(7475):229–234

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431(7006):343–349

    Article  CAS  PubMed  Google Scholar 

  7. Montange RK, Batey RT (2008) Riboswitches: emerging themes in RNA structure and function. Annu Rev Biophys 37:117–133

    Article  CAS  PubMed  Google Scholar 

  8. Serganov A, Nudler E (2013) A decade of riboswitches. Cell 152(1-2):17–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Geiss G, Jin G, Guo J, Bumgarner R, Katze MG, Sen GC (2001) A comprehensive view of regulation of gene expression by double-stranded RNA-mediated cell signaling. J Biol Chem 276(32):30178–30182

    Article  CAS  PubMed  Google Scholar 

  10. Dominguez C, Schubert M, Duss O, Ravindranathan S, Allain FH (2011) Structure determination and dynamics of protein-RNA complexes by NMR spectroscopy. Prog Nucl Magn Reson Spectrosc 58(1-2):1–61

    Article  CAS  PubMed  Google Scholar 

  11. Duss O, Yulikov M, Jeschke G, Allain FH (2014) EPR-aided approach for solution structure determination of large RNAs or protein-RNA complexes. Nat Commun 5:3669

    Article  CAS  PubMed  Google Scholar 

  12. Getz M, Sun X, Casiano-Negroni A, Zhang Q, Al-Hashimi HM (2007) NMR studies of RNA dynamics and structural plasticity using NMR residual dipolar couplings. Biopolymers 86(5-6):384–402

    Article  CAS  PubMed  Google Scholar 

  13. Preus S, Wilhelmsson LM (2012) Advances in quantitative FRET-based methods for studying nucleic acids. ChemBioChem 13(14):1990–2001

    Article  CAS  PubMed  Google Scholar 

  14. Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nat Methods 5(6):507–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sahoo H (2011) Förster resonance energy transfer—a spectroscopic nanoruler: principle and applications. J Photochem Photobiol C Photochem Rev 12(1):20–30

    Article  CAS  Google Scholar 

  16. Hubbell WL, Gross A, Langen R, Lietzow MA (1998) Recent advances in site-directed spin labeling of proteins. Curr Opin Struct Biol 8(5):649–656

    Article  CAS  PubMed  Google Scholar 

  17. Hubbell WL, Lopez CJ, Altenbach C, Yang Z (2013) Technological advances in site-directed spin labeling of proteins. Curr Opin Struct Biol 23(5):725–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hustedt EJ, Beth AH (1999) Nitroxide spin-spin interactions: applications to protein structure and dynamics. Annu Rev Biophys Biomol Struct 28:129–153

    Article  CAS  PubMed  Google Scholar 

  19. Prisner T, Rohrer M, MacMillan F (2001) Pulsed EPR spectroscopy: biological applications. Annu Rev Phys Chem 52:279–313

    Article  CAS  PubMed  Google Scholar 

  20. Schiemann O, Prisner TF (2007) Long-range distance determinations in biomacromolecules by EPR spectroscopy. Q Rev Biophys 40(1):1–53

    Article  CAS  PubMed  Google Scholar 

  21. Schiemann O, Reginsson GW (2011) Studying bimolecular complexes with pulsed electron-electron double resonance spectroscopy. Biochem Soc Trans 39:128–139

    Article  PubMed  CAS  Google Scholar 

  22. Sowa GZ, Qin PZ (2008) Site-directed spin labeling studies on nucleic acid structure and dynamics. Prog Nucleic Acid Res Mol Biol 82:147–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ubbink M, Worrall J, Canters G, Groenen E, Huber M (2002) Paramagnetic resonance of biological metal centers. Annu Rev Biophys Biomol Struct 31:393–422

    Article  CAS  PubMed  Google Scholar 

  24. Zhang XJ, Cekan P, Sigurdsson ST, Qin PZ (2009) Studying RNA using site-directed spin-labeling and continuous-wave electron paramagnetic resonance spectroscopy. Methods Enzymol 469:303–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Prisner TF, Marko A, Sigurdsson ST (2015) Conformational dynamics of nucleic acid molecules studied by PELDOR spectroscopy with rigid spin labels. J Magn Reson 252:187–198

    Article  CAS  PubMed  Google Scholar 

  26. Reginsson GW, Shelke SA, Rouillon C, White MF, Sigurdsson ST, Schiemann O (2013) Protein-induced changes in DNA structure and dynamics observed with noncovalent site-directed spin labeling and PELDOR. Nucleic Acids Res 41(1):e11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Blanchard SC (2009) Single-molecule observations of ribosome function. Curr Opin Struct Biol 19(1):103–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wozniak AK, Schroder GF, Grubmuller H, Seidel CA, Oesterhelt F (2008) Single-molecule FRET measures bends and kinks in DNA. Proc Natl Acad Sci U S A 105(47):18337–18342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hura GL, Menon AL, Hammel M, Rambo RP, Poole FL 2nd, Tsutakawa SE, Jenney FE Jr, Classen S, Frankel KA, Hopkins RC, Yang SJ, Scott JW, Dillard BD, Adams MW, Tainer JA (2009) Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS). Nat Methods 6(8):606–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ranjbar B, Gill P (2009) Circular dichroism techniques: biomolecular and nanostructural analyses—a review. Chem Biol Drug Des 74(2):101–120

    Article  CAS  PubMed  Google Scholar 

  31. Zavoisky EK (1945) Spin-magnetic resonance in paramagnetics. J Phys Acad Sci USSR 9:211–245

    Google Scholar 

  32. Edwards TE, Okonogi TM, Robinson BH, Sigurdsson ST (2001) Site-specific incorporation of nitroxide spin-labels into internal sites of the TAR RNA; structure-dependent dynamics of RNA by EPR spectroscopy. J Am Chem Soc 123(7):1527–1528

    Article  CAS  PubMed  Google Scholar 

  33. Jeschke G (2013) Conformational dynamics and distribution of nitroxide spin labels. Prog Nucl Magn Reson Spectrosc 72:42–60

    Article  CAS  PubMed  Google Scholar 

  34. Spaltenstein A, Robinson BH, Hopkins PB (1989) Sequence-dependent and structure-dependent DNA-base dynamics—synthesis, structure, and dynamics of site and sequence specifically spin-labeled DNA. Biochemistry 28(24):9484–9495

    Article  CAS  PubMed  Google Scholar 

  35. Kim NK, Murali A, DeRose VJ (2004) A distance ruler for RNA using EPR and site-directed spin labeling. Chem Biol 11(7):939–948

    Article  CAS  PubMed  Google Scholar 

  36. Macosko JC, Pio MS, Tinoco I Jr, Shin YK (1999) A novel 5 displacement spin-labeling technique for electron paramagnetic resonance spectroscopy of RNA. RNA 5(9):1158–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Freed JH (2000) New technologies in electron spin resonance. Annu Rev Phys Chem 51:655–689

    Article  CAS  PubMed  Google Scholar 

  38. Jeschke G (2002) Determination of the nanostructure of polymer materials by electron paramagnetic resonance spectroscopy. Macromol Rapid Commun 23(4):227–246

    Article  CAS  Google Scholar 

  39. Jeschke G (2012) DEER distance measurements on proteins. Annu Rev Phys Chem 63:419–446

    Article  CAS  PubMed  Google Scholar 

  40. Fedorova OS, Tsvetkov YD (2013) Pulsed electron double resonance in structural studies of spin-labeled nucleic acids. Acta Naturae 5(1):9–32

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Martin RE, Pannier M, Diederich F, Gramlich V, Hubrich M, Spiess HW (1998) Determination of end‐to‐end distances in a series of TEMPO diradicals of up to 2.8 nm length with a new four‐pulse double electron electron resonance experiment. Angew Chem Int Ed Engl 37(20):2833–2837

    Article  Google Scholar 

  42. Bowen AM, Tait CE, Timmel CR, Harmer JR (2013) Orientation-selective DEER using rigid spin labels, cofactors, metals, and clusters. In: Timmel CR, Harmer JR (eds) Structural information from spin-labels and intrinsic paramagnetic centres in the biosciences. Springer, Berlin, pp 283–327

    Chapter  Google Scholar 

  43. Denysenkov V, Prisner T, Stubbe J, Bennati M (2006) High-field pulsed electron–electron double resonance spectroscopy to determine the orientation of the tyrosyl radicals in ribonucleotide reductase. Proc Natl Acad Sci U S A 103(36):13386–13390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hustedt EJ, Smirnov AI, Laub CF, Cobb CE, Beth AH (1997) Molecular distances from dipolar coupled spin-labels: the global analysis of multifrequency continuous wave electron paramagnetic resonance data. Biophys J 72(4):1861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schiemann O, Cekan P, Margraf D, Prisner TF, Sigurdsson ST (2009) Relative orientation of rigid nitroxides by PELDOR: beyond distance measurements in nucleic acids. Angew Chem Int Ed Engl 48(18):3292–3295

    Article  CAS  PubMed  Google Scholar 

  46. Barhate N, Cekan P, Massey AP, Sigurdsson ST (2007) A nucleoside that contains a rigid nitroxide spin label: a fluorophore in disguise. Angew Chem Int Ed Engl 46(15):2655–2658

    Article  CAS  PubMed  Google Scholar 

  47. Cekan P, Smith AL, Barhate N, Robinson BH, Sigurdsson ST (2008) Rigid spin-labeled nucleoside Ç: a nonperturbing EPR probe of nucleic acid conformation. Nucleic Acids Res 36(18):5946–5954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Marko A, Denysenkov V, Margraf D, Cekan P, Schiemann O, Sigurdsson ST, Prisner TF (2011) Conformational flexibility of DNA. J Am Chem Soc 133(34):13375–13379

    Article  CAS  PubMed  Google Scholar 

  49. Kinoshita Y, Yamada KI, Yamasaki T, Sadasue H, Sakai K, Utsumi H (2009) Development of novel nitroxyl radicals for controlling reactivity with ascorbic acid. Free Radic Res 43(6):565–571

    Article  CAS  PubMed  Google Scholar 

  50. Yamasaki T, Mito F, Ito Y, Pandian S, Kinoshita Y, Nakano K, Murugesan R, Sakai K, Utsumi H, Yamada K (2011) Structure-reactivity relationship of piperidine nitroxide: electrochemical, ESR and computational studies. J Org Chem 76(2):435–440

    Article  CAS  PubMed  Google Scholar 

  51. Azarkh M, Okle O, Eyring P, Dietrich DR, Drescher M (2011) Evaluation of spin labels for in-cell EPR by analysis of nitroxide reduction in cell extract of Xenopus laevis oocytes. J Magn Reson 212(2):450–454

    Article  CAS  PubMed  Google Scholar 

  52. Jagtap AP, Krstic I, Kunjir NC, Hansel R, Prisner TF, Sigurdsson ST (2015) Sterically shielded spin labels for in-cell EPR spectroscopy: analysis of stability in reducing environment. Free Radic Res 49(1):78–85

    Article  CAS  PubMed  Google Scholar 

  53. Kinoshita Y, Yamada K, Yamasaki T, Mito F, Yamato M, Kosem N, Deguchi H, Shirahama C, Ito Y, Kitagawa K, Okukado N, Sakai K, Utsumi H (2010) In vivo evaluation of novel nitroxyl radicals with reduction stability. Free Radic Biol Med 49(11):1703–1709

    Article  CAS  PubMed  Google Scholar 

  54. Kirilyuk IA, Polienko YF, Krumkacheva OA, Strizhakov RK, Gatilov YV, Grigor’ev IA, Bagryanskaya EG (2012) Synthesis of 2,5-bis(spirocyclohexane)-substituted nitroxides of pyrroline and pyrrolidine series, including thiol-specific spin label: an analogue of MTSSL with long relaxation time. J Org Chem 77(18):8016–8027

    Article  CAS  PubMed  Google Scholar 

  55. Okazaki S, Mannan MA, Sawai K, Masumizu T, Miura Y, Takeshita K (2007) Enzymatic reduction-resistant nitroxyl spin probes with spirocyclohexyl rings. Free Radic Res 41(10):1069–1077

    Article  CAS  PubMed  Google Scholar 

  56. Paletta JT, Pink M, Foley B, Rajca S, Rajca A (2012) Synthesis and reduction kinetics of sterically shielded pyrrolidine nitroxides. Org Lett 14(20):5322–5325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Reginsson GW, Kunjir NC, Sigurdsson ST, Schiemann O (2012) Trityl radicals: spin labels for nanometer‐distance measurements. Chem Eur J 18(43):13580–13584

    Article  CAS  PubMed  Google Scholar 

  58. Shevelev GY, Krumkacheva OA, Lomzov AA, Kuzhelev AA, Rogozhnikova OY, Trukhin DV, Troitskaya TI, Tormyshev VM, Fedin MV, Pyshnyi DV, Bagryanskaya EG (2014) Physiological-temperature distance measurement in nucleic acid using triarylmethyl-based spin labels and pulsed dipolar EPR spectroscopy. J Am Chem Soc 136(28):9874–9877

    Article  CAS  PubMed  Google Scholar 

  59. Yang Z, Liu Y, Borbat P, Zweier JL, Freed JH, Hubbell WL (2012) Pulsed ESR dipolar spectroscopy for distance measurements in immobilized spin labeled proteins in liquid solution. J Am Chem Soc 134(24):9950–9952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Matalon E, Huber T, Hagelueken G, Graham B, Frydman V, Feintuch A, Otting G, Goldfarb D (2013) Gadolinium (III) spin labels for high‐sensitivity distance measurements in transmembrane helices. Angew Chem Int Ed Engl 125(45):12047–12050

    Article  Google Scholar 

  61. Ohnishi SI, McConnell HM (1965) Interaction of the radical ion of chlorpromazine with deoxyribonucleic acid. J Am Chem Soc 87:2293

    Article  CAS  PubMed  Google Scholar 

  62. Stone TJ, Buckman T, Nordio PL, McConnell HM (1965) Spin-labeled biomolecules. Proc Natl Acad Sci U S A 54(4):1010–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Borbat P, Costa-Filho A, Earle K, Moscicki J, Freed J (2001) Electron spin resonance in studies of membranes and proteins. Science 291(5502):266–269

    Article  CAS  PubMed  Google Scholar 

  64. Shelke SA, Sigurdsson ST (2012) Site-directed spin labelling of nucleic acids. Eur J Org Chem 12:2291–2301

    Article  CAS  Google Scholar 

  65. Shelke SA, Sigurdsson ST (2013) Site-directed nitroxide spin labeling of biopolymers. In: Timmel CR, Harmer JR (eds) Structural information from spin-labels and intrinsic paramagnetic centres in the biosciences. Springer, Berlin, pp 121–162

    Google Scholar 

  66. Piton N, Mu YG, Stock G, Prisner TF, Schiemann O, Engels JW (2007) Base-specific spin-labeling of RNA for structure determination. Nucleic Acids Res 35(9):3128–3143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hänsel R, Luh LM, Corbeski I, Trantirek L, Doetsch V (2014) In‐cell NMR and EPR spectroscopy of biomacromolecules. Angew Chem Int Ed Engl 53(39):10300–10314

    Article  PubMed  CAS  Google Scholar 

  68. Igarashi R, Sakai T, Hara H, Tenno T, Tanaka T, Tochio H, Shirakawa M (2010) Distance determination in proteins inside Xenopus laevis oocytes by double electron−electron resonance experiments. J Am Chem Soc 132(24):8228–8229

    Article  CAS  PubMed  Google Scholar 

  69. Krstić I, Hänsel R, Romainczyk O, Engels JW, Dötsch V, Prisner TF (2011) Long‐range distance measurements on nucleic acids in cells by pulsed EPR spectroscopy. Angew Chem Int Ed Engl 50(22):5070–5074

    Article  PubMed  CAS  Google Scholar 

  70. Nguyen P, Shi X, Sigurdsson ST, Herschlag D, Qin PZ (2013) A single-stranded junction modulates nanosecond motional ordering of the substrate recognition duplex of a group I ribozyme. ChemBioChem 14(14):1720–1723

    Article  CAS  PubMed  Google Scholar 

  71. Edwards TE, Robinson BH, Sigurdsson ST (2005) Identification of amino acids that promote specific and rigid TAR RNA-tat protein complex formation. Chem Biol 12(3):329–337

    Article  CAS  PubMed  Google Scholar 

  72. Zhang X, Lee SW, Zhao L, Xia T, Qin PZ (2010) Conformational distributions at the N-peptide/boxB RNA interface studied using site-directed spin labeling. RNA 16(12):2474–2483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Krstić I, Frolow O, Sezer D, Endeward B, Weigand JE, Suess B, Engels JW, Prisner TF (2010) PELDOR spectroscopy reveals preorganization of the neomycin-responsive riboswitch tertiary structure. J Am Chem Soc 132(5):1454–1455

    Article  PubMed  CAS  Google Scholar 

  74. Gophane DB, Endeward B, Prisner TF, Sigurdsson ST (2014) Conformationally restricted isoindoline‐derived spin labels in duplex DNA: distances and rotational flexibility by pulsed electron–electron double resonance spectroscopy. Chem Eur J 20(48):15913–15919

    Article  CAS  PubMed  Google Scholar 

  75. Engels JW, Grünewald C, Wicke L (2014) Site-directed spin labeling of RNA for distance measurements by EPR. In: Erdmann VA, Markiewicz WT, Barciszewski J (eds) Chemical biology of nucleic acids. Springer, Berlin, pp 385–407

    Chapter  Google Scholar 

  76. Qin PZ, Hideg K, Feigon J, Hubbell WL (2003) Monitoring RNA base structure and dynamics using site-directed spin labeling. Biochemistry 42(22):6772–6783

    Article  CAS  PubMed  Google Scholar 

  77. Ramos A, Varani G (1998) A new method to detect long-range protein-RNA contacts: NMR detection of electron-proton relaxation induced by nitroxide spin-labeled RNA. J Am Chem Soc 120(42):10992–10993

    Article  CAS  Google Scholar 

  78. Edwards TE, Sigurdsson ST (2007) Site-specific incorporation of nitroxide spin-labels into 2′-positions of nucleic acids. Nat Protoc 2(8):1954–1962

    Article  CAS  PubMed  Google Scholar 

  79. Qin PZ, Haworth IS, Cai Q, Kusnetzow AK, Grant GP, Price EA, Sowa GZ, Popova A, Herreros B, He H (2007) Measuring nanometer distances in nucleic acids using a sequence-independent nitroxide probe. Nat Protoc 2(10):2354–2365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ding P, Wunnicke D, Steinhoff HJ, Seela F (2010) Site-directed spin-labeling of DNA by the azide-alkyne ‘Click’ reaction: nanometer distance measurements on 7-deaza-2′-deoxyadenosine and 2′-deoxyuridine nitroxide conjugates spatially separated or linked to a ‘dA-dT’ base pair. Chem Eur J 16(48):14385–14396

    Article  CAS  PubMed  Google Scholar 

  81. Jakobsen U, Shelke SA, Vogel S, Sigurdsson ST (2010) Site-directed spin-labeling of nucleic acids by click chemistry: detection of abasic sites in duplex DNA by EPR spectroscopy. J Am Chem Soc 132(30):10424–10428

    Article  CAS  PubMed  Google Scholar 

  82. Büttner L, Javadi-Zarnaghi F, Höbartner C (2014) Site-specific labeling of RNA at internal ribose hydroxyl groups: terbium-assisted deoxyribozymes at work. J Am Chem Soc 136(22):8131–8137

    Article  PubMed  CAS  Google Scholar 

  83. McCalley R, Shimshick E, McConnell H (1972) The effect of slow rotational motion on paramagnetic resonance spectra. Chem Phys Lett 13(2):115–119

    Article  CAS  Google Scholar 

  84. Bannwarth W, Schmidt D (1994) Oligonucleotides containing spin-labeled 2′-deoxycytidine and 5-methyl-2′-deoxycytidine as probes for structural motifs of DNA. Bioorg Med Chem Lett 4(8):977–980

    Article  CAS  Google Scholar 

  85. Giordano C, Fratini F, Attanasio D, Cellai L (2001) Preparation of spin-labeled 2-amino-dA, dA, dC and 5-methyl-dC phosphoramidites for the automatic synthesis of EPR active oligonucleotides. Synthesis 4:565–572

    Article  Google Scholar 

  86. Cekan P, Sigurdsson ST (2009) Identification of single-base mismatches in duplex DNA by EPR spectroscopy. J Am Chem Soc 131(50):18054–18056

    Article  CAS  PubMed  Google Scholar 

  87. Gophane DB, Sigurdsson ST (2015) TEMPO-derived spin labels linked to the nucleobases adenine and cytosine for probing local structural perturbations in DNA by EPR spectroscopy. Beilstein J Org Chem 11(1):219–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Macmillan AM, Verdine GL (1990) Synthesis of functionally tethered oligodeoxynucleotides by the convertible nucleoside approach. J Org Chem 55(24):5931–5933

    Article  CAS  Google Scholar 

  89. Budil DE, Kolaczkowski SV, Perry A, Varaprasad C, Johnson F, Strauss PR (2000) Dynamics and ordering in a spin-labeled oligonucleotide observed by 220 GHz electron paramagnetic resonance. Biophys J 78(1):430–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kolaczkowski SV, Perry A, Mckenzie A, Johnson F, Budil DE, Strauss PR (2001) A spin-labeled abasic DNA substrate for AP endonuclease. Biochem Biophys Res Commun 288(3):722–726

    Article  CAS  PubMed  Google Scholar 

  91. Okamoto A, Inasaki T, Saito I (2004) Nitroxide-labeled guanine as an ESR spin probe for structural study of DNA. Bioorg Med Chem Lett 14(13):3415–3418

    Article  CAS  PubMed  Google Scholar 

  92. Sicoli G, Mathis G, Delalande O, Boulard Y, Gasparutto D, Gambarelli S (2008) Double electron-electron resonance (DEER): a convenient method to probe DNA conformational changes. Angew Chem Int Ed Engl 47(4):735–737

    Article  CAS  PubMed  Google Scholar 

  93. Sicoli G, Mathis G, Aci-Seche S, Saint-Pierre C, Boulard Y, Gasparutto D, Gambarelli S (2009) Lesion-induced DNA weak structural changes detected by pulsed EPR spectroscopy combined with site-directed spin labelling. Nucleic Acids Res 37(10):3165–3176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sicoli G, Wachowius F, Bennati M, Hobartner C (2010) Probing secondary structures of spin-labeled RNA by pulsed EPR spectroscopy. Angew Chem Int Ed Engl 49(36):6443–6447

    Article  CAS  PubMed  Google Scholar 

  95. Büttner L, Seikowski J, Wawrzyniak K, Ochmann A, Höbartner C (2013) Synthesis of spin-labeled riboswitch RNAs using convertible nucleosides and DNA-catalyzed RNA ligation. Bioorg Med Chem 21(20):6171–6180

    Article  PubMed  CAS  Google Scholar 

  96. Duh JL, Bobst AM (1991) Sequence-specific spin labeling of oligothymidylates by phosphotriester chemistry. Helv Chim Acta 74(4):739–747

    Article  CAS  Google Scholar 

  97. Strobel OK, Kryak DD, Bobst EV, Bobst AM (1991) Preparation and characterization of spin-labeled oligonucleotides for DNA hybridization. Bioconjug Chem 2(2):89–95

    Article  CAS  PubMed  Google Scholar 

  98. Spaltenstein A, Robinson BH, Hopkins PB (1988) A rigid and nonperturbing probe for duplex DNA motion. J Am Chem Soc 110(4):1299–1301

    Article  CAS  Google Scholar 

  99. Fischhaber PL, Reese AW, Nguyen T, Kirchner JJ, Hustedt EJ, Robinson BH, Hopkins PB (1997) Synthesis of duplex DNA containing a spin labeled analog of 2′-deoxycytidine. Nucleos Nucleot 16(4):365–377

    Article  CAS  Google Scholar 

  100. Schiemann O, Piton N, Mu YG, Stock G, Engels JW, Prisner TF (2004) A PELDOR-based nanometer distance ruler for oligonucleotides. J Am Chem Soc 126(18):5722–5729

    Article  CAS  PubMed  Google Scholar 

  101. Schiemann O, Piton N, Plackmeyer J, Bode BE, Prisner TF, Engels JW (2007) Spin labeling of oligonucleotides with the nitroxide TPA and use of PELDOR, a pulse EPR method, to measure intramolecular distances. Nat Protoc 2(4):904–923

    Article  CAS  PubMed  Google Scholar 

  102. Gannett PM, Darian E, Powell J, Johnson EM 2nd, Mundoma C, Greenbaum NL, Ramsey CM, Dalal NS, Budil DE (2002) Probing triplex formation by EPR spectroscopy using a newly synthesized spin label for oligonucleotides. Nucleic Acids Res 30(23):5328–5337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Singh V, Azarkh M, Exner TE, Hartig JS, Drescher M (2009) Human telomeric quadruplex conformations studied by pulsed EPR. Angew Chem Int Ed Engl 48(51):9728–9730

    Article  CAS  PubMed  Google Scholar 

  104. Gophane DB, Sigurdsson ST (2013) Hydrogen-bonding controlled rigidity of an isoindoline-derived nitroxide spin label for nucleic acids. Chem Commun 49(10):999–1001

    Article  CAS  Google Scholar 

  105. Flaender M, Sicoli G, Aci‐Seche S, Reignier T, Maurel V, Saint‐Pierre C, Boulard Y, Gambarelli S, Gasparutto D (2011) A triple spin‐labeling strategy coupled with DEER analysis to detect DNA modifications and enzymatic repair. ChemBioChem 12(17):2560–2563

    Article  CAS  PubMed  Google Scholar 

  106. Babaylova ES, Ivanov AV, Malygin AA, Vorobjeva MA, Venyaminova AG, Polienko YF, Kirilyuk IA, Krumkacheva OA, Fedin MV, Karpova GG, Bagryanskaya EG (2014) A versatile approach for site-directed spin labeling and structural EPR studies of RNAs. Org Biomol Chem 12(19):3129–3136

    Article  CAS  PubMed  Google Scholar 

  107. Hara H, Horiuchi T, Saneyosh M, Nishimur S (1970) 4-Thiouridine-specific spin-labeling of E-Coli transfer RNA. Biochem Biophys Res Commun 38(2):305–311

    Article  CAS  PubMed  Google Scholar 

  108. Sprinzl M, Kramer E, Stehlik D (1974) Structure of phenylalanine transfer-RNA from yeast—spin-label studies. Eur J Biochem 49(3):595–605

    Article  CAS  PubMed  Google Scholar 

  109. McIntosh AR, Caron M, Dugas H (1973) Specific spin labeling of anticodon of Escherichia-Coli transfer-RNA Glu. Biochem Biophys Res Commun 55(4):1356–1363

    Article  CAS  PubMed  Google Scholar 

  110. Rublack N, Nguyen H, Appel B, Springstubbe D, Strohbach D, Muller S (2011) Synthesis of specifically modified oligonucleotides for application in structural and functional analysis of RNA. J Nucleic Acids 2011:805253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Qin PZ, Feigon J, Hubbell WL (2005) Site-directed spin labeling studies reveal solution conformational changes in a GAAA tetraloop receptor upon Mg2+ -dependent docking of a GAAA tetraloop. J Mol Biol 351(1):1–8

    Article  CAS  PubMed  Google Scholar 

  112. Qin PZ, Iseri J, Oki A (2006) A model system for investigating lineshape/structure correlations in RNA site-directed spin labeling. Biochem Biophys Res Commun 343(1):117–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wunnicke D, Strohbach D, Weigand JE, Appel B, Feresin E, Suess B, Muller S, Steinhoff HJ (2011) Ligand-induced conformational capture of a synthetic tetracycline riboswitch revealed by pulse EPR. RNA 17(1):182–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Okamoto A, Taiji T, Tainaka K, Saito I (2002) Oligonucleotides containing 7-vinyl-7-deazaguanine as a facile strategy for expanding the functional diversity of DNA. Bioorg Med Chem Lett 12(15):1895–1896

    Article  CAS  PubMed  Google Scholar 

  115. Belikova A, Zarytova V, Grineva N (1967) Synthesis of ribonucleosides and diribonucleoside phosphates containing 2-chloro-ethylamine and nitrogen mustard residues. Tetrahedron Lett 8(37):3557–3562

    Article  Google Scholar 

  116. Lebars I, Vileno B, Bourbigot S, Turek P, Wolff P, Kieffer B (2014) A fully enzymatic method for site-directed spin labeling of long RNA. Nucleic Acids Res 42(15):e117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Miller TR, Alley SC, Reese AW, Solomon MS, Mccallister WV, Mailer C, Robinson BH, Hopkins PB (1995) A probe for sequence-dependent nucleic-acid dynamics. J Am Chem Soc 117(36):9377–9378

    Article  CAS  Google Scholar 

  118. Miller TR, Hopkins PB (1994) Toward the synthesis of a 2nd-generation nitroxide spin-probe for DNA dynamics studies. Bioorg Med Chem Lett 4(8):981–986

    Article  CAS  Google Scholar 

  119. Edwards TE, Okonogi TM, Sigurdsson ST (2002) Investigation of RNA-protein and RNA-metal ion interactions by electron paramagnetic resonance spectroscopy. The HIV TAR-Tat motif. Chem Biol 9(6):699–706

    Article  CAS  PubMed  Google Scholar 

  120. Okonogi T, Reese AW, Alley SC, Hopkins PB, Robinson BH (1999) Flexibility of duplex DNA on the submicrosecond timescale. Biophys J 77(6):3256–3276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Okonogi TM, Alley SC, Reese AW, Hopkins PB, Robinson BH (2000) Sequence-dependent dynamics in duplex DNA. Biophys J 78(5):2560–2571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Edwards TE, Cekan P, Reginsson GW, Shelke SA, Ferre-D’Amare AR, Schiemann O, Sigurdsson ST (2011) Crystal structure of a DNA containing the planar, phenoxazine-derived bi-functional spectroscopic probe Ç. Nucleic Acids Res 39(10):4419–4426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Marko A, Margraf D, Cekan P, Sigurdsson ST, Schiemann O, Prisner TF (2010) Analytical method to determine the orientation of rigid spin labels in DNA. Phys Rev E 81(2):21911–21919

    Article  CAS  Google Scholar 

  124. Cekan P, Sigurdsson ST (2012) Conformation and dynamics of nucleotides in bulges and symmetric internal loops in duplex DNA studied by EPR and fluorescence spectroscopies. Biochem Biophys Res Commun 420(3):656–661

    Article  CAS  PubMed  Google Scholar 

  125. Cekan P, Sigurdsson ST (2008) Single base interrogation by a fluorescent nucleotide: each of the four DNA bases identified by fluorescence spectroscopy. Chem Commun 29:3393–3395

    Article  CAS  Google Scholar 

  126. Gardarsson H, Kale AS, Sigurdsson ST (2011) Structure–function relationships of phenoxazine nucleosides for identification of mismatches in duplex DNA by fluorescence spectroscopy. ChemBioChem 12(4):567–575

    Article  CAS  PubMed  Google Scholar 

  127. Gardarsson H, Sigurdsson ST (2010) Large flanking sequence effects in single nucleotide mismatch detection using fluorescent nucleoside Çf. Bioorg Med Chem 18(16):6121–6126

    Article  CAS  PubMed  Google Scholar 

  128. Cekan P, Jonsson EO, Sigurdsson ST (2009) Folding of the cocaine aptamer studied by EPR and fluorescence spectroscopies using the bifunctional spectroscopic probe Ç. Nucleic Acids Res 37(12):3990–3995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Höbartner C, Sicoli G, Wachowius F, Gophane DB, Sigurdsson ST (2012) Synthesis and characterization of RNA containing a rigid and nonperturbing cytidine-derived spin label. J Org Chem 77(17):7749–7754

    Article  PubMed  CAS  Google Scholar 

  130. Tkach I, Pornsuwan S, Höbartner C, Wachowius F, Sigurdsson ST, Baranova TY, Diederichsen U, Sicoli G, Bennati M (2013) Orientation selection in distance measurements between nitroxide spin labels at 94 GHz EPR with variable dual frequency irradiation. Phys Chem Chem Phys 15(10):3433–3437

    Article  CAS  PubMed  Google Scholar 

  131. Edwards TE, Sigurdsson ST (2002) Electron paramagnetic resonance dynamic signatures of TAR RNA-small molecule complexes provide insight into RNA structure and recognition. Biochemistry 41(50):14843–14847

    Article  CAS  PubMed  Google Scholar 

  132. Edwards TE, Sigurdsson ST (2005) EPR spectroscopic analysis of U7 hammerhead ribozyme dynamics during metal ion induced folding. Biochemistry 44(38):12870–12878

    Article  CAS  PubMed  Google Scholar 

  133. Kim NK, Bowman MK, DeRose VJ (2010) Precise mapping of RNA tertiary structure via nanometer distance measurements with double electron-electron resonance spectroscopy. J Am Chem Soc 132(26):8882–8884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kim NK, Murali A, DeRose VJ (2005) Separate metal requirements for loop interactions and catalysis in the extended hammerhead ribozyme. J Am Chem Soc 127(41):14134–14135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Schiemann O, Weber A, Edwards TE, Prisner TF, Sigurdsson ST (2003) Nanometer distance measurements on RNA using PELDOR. J Am Chem Soc 125(12):3434–3435

    Article  CAS  PubMed  Google Scholar 

  136. Ward R, Keeble DJ, El-Mkami H, Norman DG (2007) Distance determination in heterogeneous DNA model systems by pulsed EPR. ChemBioChem 8(16):1957–1964

    Article  CAS  PubMed  Google Scholar 

  137. Flaender M, Sicoli G, Fontecave T, Mathis G, Saint-Pierre C, Boulard Y, Gambarelli S, Gasparutto D (2008) Site-specific insertion of nitroxide-spin labels into DNA probes by click chemistry for structural analyses by ELDOR spectroscopy. Nucleic Acids Symp Ser (Oxf) 52:147–148

    Article  CAS  Google Scholar 

  138. Murakami A, Mukae M, Nagahara S, Konishi Y, Ide H, Makino K (1993) Oligonucleotides site-specifically spin-labeled at 5′-terminal or internucleotide linkage and their use in gene analyses. Free Radic Res Commun 19(Suppl 1):S117–S128

    Article  CAS  PubMed  Google Scholar 

  139. Kunjir NC, Reginsson GW, Schiemann O, Sigurdsson ST (2013) Measurements of short distances between trityl spin labels with CW EPR, DQC and PELDOR. Phys Chem Chem Phys 15(45):19673–19685

    Article  CAS  PubMed  Google Scholar 

  140. Bobko AA, Dhimitruka I, Zweier JL, Khramtsov VV (2007) Trityl radicals as persistent dual function pH and oxygen probes for in vivo electron paramagnetic resonance spectroscopy and imaging: concept and experiment. J Am Chem Soc 129(23):7240–7241

    Article  CAS  PubMed  Google Scholar 

  141. Owenius R, Eaton GR, Eaton SS (2005) Frequency (250MHz to 9.2 GHz) and viscosity dependence of electron spin relaxation of triarylmethyl radicals at room temperature. J Magn Reson 172(1):168–175

    Article  CAS  PubMed  Google Scholar 

  142. Caron M, Dugas H (1976) Specific spin-labeling of transfer ribonucleic acid molecules. Nucleic Acids Res 3(1):19–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Pscheidt RH, Wells BD (1986) Different conformations of the 3′ termini of initiator and elongator transfer ribonucleic acids an EPR study. J Biol Chem 261(16):7253–7256

    CAS  PubMed  Google Scholar 

  144. Luoma GA, Herring FG, Marshall AG (1982) Flexibility of end-labeled polymers from electron-spin resonance line-shape analysis—3′ terminus of transfer ribonucleic-acid and 5s ribonucleic-acid. Biochemistry 21(25):6591–6598

    Article  CAS  PubMed  Google Scholar 

  145. Grant GPG, Popova A, Qin PZ (2008) Diastereomer characterizations of nitroxide-labeled nucleic acids. Biochem Biophys Res Commun 371(3):451–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Popova AM, Qin PZ (2010) A nucleotide-independent nitroxide probe reports on site-specific stereomeric environment in DNA. Biophys J 99(7):2180–2189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Gish G, Eckstein F (1988) DNA and RNA sequence determination based on phosphorothioate chemistry. Science 240(4858):1520–1522

    Article  CAS  PubMed  Google Scholar 

  148. Makino K, Murakami A, Nagahara S, Nakatsuji Y, Takeuchi T (1989) A study on spin-labeled oligonucleotide synthesis and its electron-spin resonance behavior in solution. Free Radic Res Commun 6(5):311–316

    Article  CAS  PubMed  Google Scholar 

  149. Burgers PMJ, Eckstein F (1979) Diastereomers of 5′-O-adenosyl 3′-O-uridyl phosphorothioate—chemical synthesis and enzymatic properties. Biochemistry 18(4):592–596

    Article  CAS  PubMed  Google Scholar 

  150. Fidanza JA, Mclaughlin LW (1989) Introduction of reporter groups at specific sites in DNA containing phosphorothioate diesters. J Am Chem Soc 111(25):9117–9119

    Article  CAS  Google Scholar 

  151. Qin PZ, Butcher SE, Feigon J, Hubbell WL (2001) Quantitative analysis of the isolated GAAA tetraloop/receptor interaction in solution: a site-directed spin labeling study. Biochemistry 40(23):6929–6936

    Article  CAS  PubMed  Google Scholar 

  152. Esquiaqui JM, Sherman EM, Ionescu SA, Ye J-D, Fanucci GE (2014) Characterizing the dynamics of the leader–linker interaction in the glycine riboswitch with site-directed spin labeling. Biochemistry 53(22):3526–3528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Popova AM, Kalai T, Hideg K, Qin PZ (2009) Site-specific DNA structural and dynamic features revealed by nucleotide-independent nitroxide probes. Biochemistry 48(36):8540–8550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Zhang X, Tung CS, Sowa GZ, Hatmal MM, Haworth IS, Qin PZ (2012) Global structure of a three-way junction in a phi29 packaging RNA dimer determined using site-directed spin labeling. J Am Chem Soc 134(5):2644–2652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Zhang X, Dantas Machado AC, Ding Y, Chen Y, Lu Y, Duan Y, Tham KW, Chen L, Rohs R, Qin PZ (2014) Conformations of p53 response elements in solution deduced using site-directed spin labeling and Monte Carlo sampling. Nucleic Acids Res 42(4):2789–2797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Grant GPG, Boyd N, Herschlag D, Qin PZ (2009) Motions of the substrate recognition duplex in a group I intron assessed by site-directed spin labeling. J Am Chem Soc 131(9):3136–3137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ding Y, Zhang X, Tham KW, Qin PZ (2014) Experimental mapping of DNA duplex shape enabled by global lineshape analyses of a nucleotide-independent nitroxide probe. Nucleic Acids Res 42(18):e140

    Article  PubMed  PubMed Central  Google Scholar 

  158. Nguyen PH, Popova AM, Hideg K, Qin PZ (2015) A nucleotide-independent cyclic nitroxide label for monitoring segmental motions in nucleic acids. BMC Biophys 8(1):6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Fleissner MR, Bridges MD, Brooks EK, Cascio D, Kalai T, Hideg K, Hubbell WL (2011) Structure and dynamics of a conformationally constrained nitroxide side chain and applications in EPR spectroscopy. Proc Natl Acad Sci U S A 108(39):16241–16246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Rayes RF, Kalai T, Hideg K, Geeves MA, Fajer PG (2011) Dynamics of tropomyosin in muscle fibers as monitored by saturation transfer EPR of bi-functional probe. PLoS One 6(6):e21277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Kuznetsov NA, Milov AD, Koval VV, Samoilova RI, Grishin YA, Knorre DG, Tsvetkov YD, Fedorova OS, Dzuba SA (2009) PELDOR study of conformations of double-spin-labeled single- and double-stranded DNA with non-nucleotide inserts. Phys Chem Chem Phys 11(31):6826–6832

    Article  CAS  PubMed  Google Scholar 

  162. Wunderlich CH, Huber RG, Spitzer R, Liedl KR, Kloiber K, Kreutz C (2013) A novel paramagnetic relaxation enhancement tag for nucleic acids: a tool to study structure and dynamics of RNA. ACS Chem Biol 8(12):2697–2706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Grant GP, Qin PZ (2007) A facile method for attaching nitroxide spin labels at the 5′ terminus of nucleic acids. Nucleic Acids Res 35(10):e77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Belmont P, Chapelle C, Demeunynck M, Michon J, Michon P, Lhomme J (1998) Introduction of a nitroxide group on position 2 of 9-phenoxyacridine: easy access to spin labelled DNA-binding conjugates. Bioorg Med Chem Lett 8(6):669–674

    Article  CAS  PubMed  Google Scholar 

  165. Thomas F, Michon J, Lhomme J (1999) Interaction of a spin-labeled adenine-acridine conjugate with a DNA duplex containing an abasic site model. Biochemistry 38(6):1930–1937

    Article  CAS  PubMed  Google Scholar 

  166. Atsumi H, Maekawa K, Nakazawa S, Shiomi D, Sato K, Kitagawa M, Takui T, Nakatani K (2010) Noncovalent assembly of TEMPO radicals pair-wise embedded on a DNA duplex. Chem Lett 39(6):556–557

    Article  CAS  Google Scholar 

  167. Atsumi H, Maekawa K, Nakazawa S, Shiomi D, Sato K, Kitagawa M, Takui T, Nakatani K (2012) Tandem arrays of TEMPO and nitronyl nitroxide radicals with designed arrangements on DNA. Chem Eur J 18(1):178–183

    Article  CAS  PubMed  Google Scholar 

  168. Atsumi H, Nakazawa S, Dohno C, Sato K, Takui T, Nakatani K (2013) Ligand-induced electron spin-assembly on a DNA tile. Chem Commun 49(57):6370–6372

    Article  CAS  Google Scholar 

  169. Maekawa K, Nakazawa S, Atsumi H, Shiomi D, Sato K, Kitagawa M, Takui T, Nakatani K (2010) Programmed assembly of organic radicals on DNA. Chem Commun 46(8):1247–1249

    Article  CAS  Google Scholar 

  170. Shelke SA, Sigurdsson ST (2010) Noncovalent and site-directed spin labeling of nucleic acids. Angew Chem Int Ed Engl 49(43):7984–7986

    Article  CAS  PubMed  Google Scholar 

  171. Shelke SA, Sigurdsson ST (2012) Structural changes of an abasic site in duplex DNA affect noncovalent binding of the spin label ç. Nucleic Acids Res 40(8):3732–3740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Shelke SA, Sigurdsson ST (2012) Effect of N3 modifications on the affinity of spin label ç for abasic sites in duplex DNA. ChemBioChem 13(5):684–690

    Article  CAS  PubMed  Google Scholar 

  173. Shelke SA, Sandholt GB, Sigurdsson ST (2014) Nitroxide-labeled pyrimidines for non-covalent spin-labeling of abasic sites in DNA and RNA duplexes. Org Biomol Chem 12(37):7366–7374

    Article  CAS  PubMed  Google Scholar 

  174. Chalmers BA, Saha S, Nguyen T, McMurtrie J, Sigurdsson ST, Bottle SE, Masters K-S (2014) TMIO-PyrImid hybrids are profluorescent, site-directed spin labels for nucleic acids. Org Lett 16(21):5528–5531

    Article  CAS  PubMed  Google Scholar 

  175. Duss O, Yulikov M, Allain FH-T, Jeschke G (2015) Combining NMR and EPR to determine structures of large RNAs and protein–RNA complexes in solution. Methods Enzymol 558:279–331

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank members of the Sigurdsson research group for critical reading of the manuscript and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snorri Th. Sigurdsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shelke, S.A., Sigurdsson, S.T. (2016). Site-Directed Spin Labeling for EPR Studies of Nucleic Acids. In: Nakatani, K., Tor, Y. (eds) Modified Nucleic Acids. Nucleic Acids and Molecular Biology, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-319-27111-8_8

Download citation

Publish with us

Policies and ethics