Skip to main content

Real-Time Deconvolution with GPU and Spark for Big Imaging Data Analysis

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9530))

Abstract

Light sheet fluorescence microscopy (LSFM) led researchers to get optical sections of large samples, virtually without toxicity and light bleaching and with high temporal resolution, and to record the development of large, living samples with exceptionally high information content. And images observed by LSFM with high signal to noise ratio are very suited for three-dimensional reconstruction. Deconvolution reduces blurring from out-of-focus light to improve the contrast and sharpness of image, but commercial deconvolution software is slow and expensive which cannot meet the current demand. GPU is the new many-core processor with powerful floating point performance, so we parallelized the Richardson Lucy Deconvolution on the GPU. Under ensuring image quality, the implementation on the GPU runs ~30 times faster than the implementation on the CPU. For an image of size 1024 × 1024 × 25, the deconvolved time of 50 iterations on the GPU is no more than 2 s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Santi, P.A.: Light Sheet fluorescence microscopy a review. J Histochem Cytochem 59(2), 129–138 (2011). doi:10.1369/0022155410394857

    Article  Google Scholar 

  2. Reynaud, E.G., Krzic, U., Greger, K., Stelzer, E.H.K.: Light sheet-based fluorescence microscopy: more dimensions, more photons, and less photodamage. HFSF J 2(5), 266–275 (2008)

    Article  Google Scholar 

  3. Shaw, P.J.: Comparison of wide-field/deconvolution and confocal microscopy for 3D imaging. In: Pawley, J.B. (ed.) Handbook of Biological Confocal Microscopy, pp. 373–387. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  4. Apache Spark. https://spark.apache.org/

  5. NVIDIA CUDA. http://www.nvidia.com/object/cuda_home_new.html

  6. Zaharia, M., Chowdhury, M., Franklin, M.J.: Spark: cluster computing with working sets (2010)

    Google Scholar 

  7. Richardson, W.H.: Bayesian-base iterative method of image restoration. JOSA 62(1), 55–59 (1972)

    Article  Google Scholar 

  8. Lucy, L.B.: An iterative technique for the rectification of observed distributions. Astron. J. 79, 745–754 (1974)

    Article  Google Scholar 

  9. Richardson Lucy: http://en.wikipedia.org/wiki/RichardsonLucy_deconvolution

  10. NVIDIA CUDA C Programming Guide. http://www.NVIDIA.com/cuda

  11. cuFFT. https://developer.nvidia.com/cuFFT

  12. Ryoo, S., Rodrigues, C.I., Baghsorkhi, S.S.: Optimization principles and application performance evaluation of a multithreaded GPU using CUDA. In: Proceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (2008)

    Google Scholar 

  13. Spark Programming Guide. http://spark.apache.org/docs/latest/programming-guide.html

  14. FFTW. http://www.fftw.org

  15. Griffa, A., Garin, N., Sage, D.: Hollow Bars. http://bigwww.epfl.ch/deconvolution/?p=bars

  16. ImageJ. http://imagej.nih.gov/ij/

  17. Ingaramo, M., York, A.G., Hoogendoorn, E., Postma, M., Shroff, H., Patterson, G.H.: Richardson-Lucy deconvolution as a general tool for combining images with complementary strengths. ChemPhySchem 15(4), 794–800 (2014)

    Article  Google Scholar 

  18. Liu, H., Zhang, Z., Liu, S., Liu, T., Yan, L., Zhang, T.: Richardson-Lucy blind deconvolution of spectroscopic data with wavelet regularization. Appl. Optics 54(7), 1770–1775 (2015)

    Article  Google Scholar 

  19. Stohl, F., Kaminski, C.F.: A joint Richardson—Lucy deconvolution algorithm for the reconstruction of multifocal structured illumination microscopy data. Methods Appl. Fluoresc. 3(1), 014002 (2015)

    Article  Google Scholar 

  20. Zhu, J., Chen, L., Chen, A., Luo, G., Deng, X., Liu, X.: Fast 3D dosimetric verifications based on an electronic portal imaging device using a GPU calculation engine (2015)

    Google Scholar 

  21. Sherry, M., Shearer, A.: IMPAIR: massively parallel deconvolution on the GPU. In: Proceedings of SPIE - The International Society for Optical Engineering (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianyu Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Cao, L., Juan, P., Zhang, Y. (2015). Real-Time Deconvolution with GPU and Spark for Big Imaging Data Analysis. In: Wang, G., Zomaya, A., Martinez, G., Li, K. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2015. Lecture Notes in Computer Science(), vol 9530. Springer, Cham. https://doi.org/10.1007/978-3-319-27137-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27137-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27136-1

  • Online ISBN: 978-3-319-27137-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics