Skip to main content

Oxidative Stress and Cancer Epigenomics

  • Chapter
  • First Online:
Epigenetics - A Different Way of Looking at Genetics

Part of the book series: Epigenetics and Human Health ((EHH))

  • 1750 Accesses

Abstract

Oxidative stress is a hallmark of aging as well as of many tumors and is caused by an imbalance of production and clearance of reactive oxygen species (ROS). High levels of ROS directly damage proteins, lipids, and DNA. Oxidative lesions of DNA lead to increased chromosomal breakage numbers and genomic instability. Besides, ROS induce activation of signaling cascades and regulate transcription factors, which result in changes in proliferation, angiogenesis, and metastasis, all characteristics of malignant transformation. Additionally, it has also been shown that oxidative stress directly changes DNA methyltransferase (DNMT1) DNA-binding affinities or inhibits DNA and histone demethylases and α-ketoglutarate-dependent dioxygenases. Readouts of the oxidative stress burden are found as GC→TA transversions. These transversions, frequently observed in tissues with high ROS, are utilized as markers of oxidative stress. The contribution of ROS to epigenetic patterning in cancer as well as genomic alterations contributing to metabolic imbalances and thus indirectly influencing the cellular epigenome is in the focus of this chapter. Since cancer-related alterations are found as changes in the distribution of modified cytosines (5mC, 5hmC, 5fC, and 5caC), new high-throughput technologies, provided for the discrimination of these modifications, are summarized at the end of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afanas’ev I (2015) Mechanisms of superoxide signaling in epigenetic processes: relation to aging and cancer. Aging Dis 6(3):216–227

    Article  PubMed  PubMed Central  Google Scholar 

  • Andrews NC et al (1993) Erythroid transcription factor NF-E2 is a haematopoietic-specific basic-leucine zipper protein. Nature 362(6422):722–728

    Article  CAS  PubMed  Google Scholar 

  • Aykin-Burns N et al (2009) Increased levels of superoxide and H2O2 mediate the differential susceptibility of cancer cells versus normal cells to glucose deprivation. Biochem J 418(1):29–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee D (2009) Novel targets in cancer therapy. Curr Pharm Biotechnol 10(2):147

    Article  CAS  PubMed  Google Scholar 

  • Beck S, Rakyan VK (2008) The methylome: approaches for global DNA methylation profiling. Trends Genet 24(5):231–237

    Article  CAS  PubMed  Google Scholar 

  • Behbahani TE et al (2012) Alterations of global histone H4K20 methylation during prostate carcinogenesis. BMC Urol 12:5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben Mahdi MH, Andrieu V, Pasquier C (2000) Focal adhesion kinase regulation by oxidative stress in different cell types. IUBMB Life 50(4–5):291–299

    Article  CAS  PubMed  Google Scholar 

  • Bianco-Miotto T et al (2010) Global levels of specific histone modifications and an epigenetic gene signature predict prostate cancer progression and development. Cancer Epidemiol Biomarkers Prev 19(10):2611–2622

    Article  CAS  PubMed  Google Scholar 

  • Birben E et al (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5(1):9–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Booth MJ et al (2012) Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science 336(6083):934–937

    Article  CAS  PubMed  Google Scholar 

  • Branton D et al (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26(10):1146–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenneisen P et al (1997) Hydrogen peroxide (H2O2) increases the steady-state mRNA levels of collagenase/MMP-1 in human dermal fibroblasts. Free Radic Biol Med 22(3):515–524

    Article  CAS  PubMed  Google Scholar 

  • Bruijn LI et al (1998) Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science 281(5384):1851–1854

    Article  CAS  PubMed  Google Scholar 

  • Brunner AL et al (2009) Distinct DNA methylation patterns characterize differentiated human embryonic stem cells and developing human fetal liver. Genome Res 19(6):1044–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan DW et al (2008) Loss of MKP3 mediated by oxidative stress enhances tumorigenicity and chemoresistance of ovarian cancer cells. Carcinogenesis 29(9):1742–1750

    Article  CAS  PubMed  Google Scholar 

  • Chen QM et al (1998) Molecular analysis of H2O2-induced senescent-like growth arrest in normal human fibroblasts: p53 and Rb control G1 arrest but not cell replication. Biochem J 332(Pt 1):43–50

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H et al (2006) Nickel ions increase histone H3 lysine 9 dimethylation and induce transgene silencing. Mol Cell Biol 26(10):3728–3737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng KC et al (1992) 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G—T and A—C substitutions. J Biol Chem 267(1):166–172

    CAS  PubMed  Google Scholar 

  • Chiarugi P et al (2003) Reactive oxygen species as essential mediators of cell adhesion: the oxidative inhibition of a FAK tyrosine phosphatase is required for cell adhesion. J Cell Biol 161(5):933–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chircop M, Speidel D (2014) Cellular stress responses in cancer and cancer therapy. Front Oncol 4:304

    Article  PubMed  PubMed Central  Google Scholar 

  • Cho HY et al (2002) Role of NRF2 in protection against hyperoxic lung injury in mice. Am J Respir Cell Mol Biol 26(2):175–182

    Article  CAS  PubMed  Google Scholar 

  • Choi SY et al (2012) Reactive oxygen species mediate Jak2/Stat3 activation and IL-8 expression in pulmonary epithelial cells stimulated with lipid-associated membrane proteins from Mycoplasma pneumoniae. Inflamm Res 61(5):493–501

    Article  CAS  PubMed  Google Scholar 

  • Christman JK et al (1995) 5-Methyl-2′-deoxycytidine in single-stranded DNA can act in cis to signal de novo DNA methylation. Proc Natl Acad Sci U S A 92(16):7347–7351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colavitti R, Finkel T (2005) Reactive oxygen species as mediators of cellular senescence. IUBMB Life 57(4–5):277–281

    Article  CAS  PubMed  Google Scholar 

  • Cross SH et al (1994) Purification of CpG islands using a methylated DNA binding column. Nat Genet 6(3):236–244

    Article  CAS  PubMed  Google Scholar 

  • Cunningham JM et al (1998) Hypermethylation of the hMLH1 promoter in colon cancer with microsatellite instability. Cancer Res 58(15):3455–3460

    CAS  PubMed  Google Scholar 

  • Dang L, Jin S, Su SM (2010) IDH mutations in glioma and acute myeloid leukemia. Trends Mol Med 16(9):387–397

    Article  CAS  PubMed  Google Scholar 

  • Dhalla NS, Temsah RM, Netticadan T (2000) Role of oxidative stress in cardiovascular diseases. J Hypertens 18(6):655–673

    Article  CAS  PubMed  Google Scholar 

  • Down TA et al (2008) A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nat Biotechnol 26(7):779–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1):47–95

    Article  CAS  PubMed  Google Scholar 

  • Eckhardt F et al (2006) DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet 38(12):1378–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elsheikh SE et al (2009) Global histone modifications in breast cancer correlate with tumor phenotypes, prognostic factors, and patient outcome. Cancer Res 69(9):3802–3809

    Article  CAS  PubMed  Google Scholar 

  • Esteller M et al (1999) hMLH1 promoter hypermethylation is an early event in human endometrial tumorigenesis. Am J Pathol 155(5):1767–1772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fay J et al (2006) Reactive oxygen species induce expression of vascular endothelial growth factor in chondrocytes and human articular cartilage explants. Arthritis Res Ther 8(6):R189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fearon IM, Faux SP (2009) Oxidative stress and cardiovascular disease: novel tools give (free) radical insight. J Mol Cell Cardiol 47(3):372–381

    Article  CAS  PubMed  Google Scholar 

  • Feinberg AP (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447(7143):433–440

    Article  CAS  PubMed  Google Scholar 

  • Figueroa ME et al (2010) Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18(6):553–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraga MF et al (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37(4):391–400

    Article  CAS  PubMed  Google Scholar 

  • Franco R et al (2008) Oxidative stress, DNA methylation and carcinogenesis. Cancer Lett 266(1):6–11

    Article  CAS  PubMed  Google Scholar 

  • Frommer M et al (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 89(5):1827–1831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gumy-Pause F et al (2012) GSTP1 hypermethylation is associated with reduced protein expression, aggressive disease and prognosis in neuroblastoma. Genes Chromosomes Cancer 51(2):174–185

    Article  CAS  PubMed  Google Scholar 

  • Guyton KZ et al (1996) Activation of mitogen-activated protein kinase by H2O2. Role in cell survival following oxidant injury. J Biol Chem 271(8):4138–4142

    Article  CAS  PubMed  Google Scholar 

  • He YF et al (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333(6047):1303–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hepburn PA, Margison GP, Tisdale MJ (1991) Enzymatic methylation of cytosine in DNA is prevented by adjacent O6-methylguanine residues. J Biol Chem 266(13):7985–7987

    CAS  PubMed  Google Scholar 

  • Hitchler MJ et al (2006) Epigenetic regulation of manganese superoxide dismutase expression in human breast cancer cells. Epigenetics 1(4):163–171

    Article  PubMed  Google Scholar 

  • Hou N et al (2008) Reactive oxygen species-mediated pancreatic beta-cell death is regulated by interactions between stress-activated protein kinases, p38 and c-Jun N-terminal kinase, and mitogen-activated protein kinase phosphatases. Endocrinology 149(4):1654–1665

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Rao A (2014) Connections between TET proteins and aberrant DNA modification in cancer. Trends Genet 30(10):464–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurt EM et al (2007) Molecular consequences of SOD2 expression in epigenetically silenced pancreatic carcinoma cell lines. Br J Cancer 97(8):1116–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussong M et al (2014) The bromodomain protein BRD4 regulates the KEAP1/NRF2-dependent oxidative stress response. Cell Death Dis 5, e1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Igarashi K et al (1994) Regulation of transcription by dimerization of erythroid factor NF-E2 p45 with small Maf proteins. Nature 367(6463):568–572

    Article  CAS  PubMed  Google Scholar 

  • Ito S et al (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333(6047):1300–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh K et al (2003) Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles. Genes Cells 8(4):379–391

    Article  CAS  PubMed  Google Scholar 

  • Jones PA (2002) DNA methylation and cancer. Oncogene 21(35):5358–5360

    Article  CAS  PubMed  Google Scholar 

  • Kamata H et al (2005) Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120(5):649–661

    Article  CAS  PubMed  Google Scholar 

  • Kang KA et al (2012) Epigenetic changes induced by oxidative stress in colorectal cancer cells: methylation of tumor suppressor RUNX3. Tumour Biol 33(2):403–412

    Article  CAS  PubMed  Google Scholar 

  • Kats LM et al (2014) Proto-oncogenic role of mutant IDH2 in leukemia initiation and maintenance. Cell Stem Cell 14(3):329–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawaji H et al (2014) Comparison of CAGE and RNA-seq transcriptome profiling using clonally amplified and single-molecule next-generation sequencing. Genome Res 24(4):708–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keshet I et al (2006) Evidence for an instructive mechanism of de novo methylation in cancer cells. Nat Genet 38(2):149–153

    Article  CAS  PubMed  Google Scholar 

  • Kloypan C et al (2015) LINE-1 hypomethylation induced by reactive oxygen species is mediated via depletion of S-adenosylmethionine. Cell Biochem Funct 33(6):375–384

    Article  CAS  PubMed  Google Scholar 

  • Ko M et al (2010) Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468(7325):839–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi A, Ohta T, Yamamoto M (2004) Unique function of the Nrf2-Keap1 pathway in the inducible expression of antioxidant and detoxifying enzymes. Methods Enzymol 378:273–286

    Article  CAS  PubMed  Google Scholar 

  • Konstandin N et al (2011) Genomic 5-hydroxymethylcytosine levels correlate with TET2 mutations and a distinct global gene expression pattern in secondary acute myeloid leukemia. Leukemia 25(10):1649–1652

    Article  CAS  PubMed  Google Scholar 

  • Kriaucionis S, Heintz N (2009) The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324(5929):929–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacy F, O’Connor DT, Schmid-Schonbein GW (1998) Plasma hydrogen peroxide production in hypertensives and normotensive subjects at genetic risk of hypertension. J Hypertens 16(3):291–303

    Article  CAS  PubMed  Google Scholar 

  • Lacy F et al (2000) Plasma hydrogen peroxide production in human essential hypertension: role of heredity, gender, and ethnicity. Hypertension 36(5):878–884

    Article  CAS  PubMed  Google Scholar 

  • Lee KH et al (2011) Promoter methylation status of hMLH1, hMSH2, and MGMT genes in colorectal cancer associated with adenoma-carcinoma sequence. Langenbecks Arch Surg 396(7):1017–1026

    Article  PubMed  Google Scholar 

  • Leszinski G et al (2012) Relevance of histone marks H3K9me3 and H4K20me3 in cancer. Anticancer Res 32(5):2199–2205

    CAS  PubMed  Google Scholar 

  • Lim SO et al (2008) Epigenetic changes induced by reactive oxygen species in hepatocellular carcinoma: methylation of the E-cadherin promoter. Gastroenterology 135(6):2128–2140, 2140 e1–8

    Article  CAS  PubMed  Google Scholar 

  • Liu BL et al (2010) Global histone modification patterns as prognostic markers to classify glioma patients. Cancer Epidemiol Biomarkers Prev 19(11):2888–2896

    Article  CAS  PubMed  Google Scholar 

  • Liu X et al (2013) Decreased 5-hydroxymethylcytosine levels are associated with TET2 mutation and unfavorable overall survival in myelodysplastic syndromes. Leuk Lymphoma 54(11):2466–2473

    Article  CAS  PubMed  Google Scholar 

  • Lopez J et al (2009) The context and potential of epigenetics in oncology. Br J Cancer 100(4):571–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lotharius J, Brundin P (2002) Impaired dopamine storage resulting from alpha-synuclein mutations may contribute to the pathogenesis of Parkinson’s disease. Hum Mol Genet 11(20):2395–2407

    Article  CAS  PubMed  Google Scholar 

  • Lund J, Parviz BA (2009) Scanning probe and nanopore DNA sequencing: core techniques and possibilities. Methods Mol Biol 578:113–122

    Article  CAS  PubMed  Google Scholar 

  • Madzo J et al (2014) Hydroxymethylation at gene regulatory regions directs stem/early progenitor cell commitment during erythropoiesis. Cell Rep 6(1):231–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maiti A, Drohat AC (2011) Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J Biol Chem 286(41):35334–35338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maldonado L et al (2014) GSTP1 promoter methylation is associated with recurrence in early stage prostate cancer. J Urol 192(5):1542–1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maritim AC, Sanders RA, Watkins JB III (2003) Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 17(1):24–38

    Article  CAS  PubMed  Google Scholar 

  • Mates JM, Sanchez-Jimenez FM (2000) Role of reactive oxygen species in apoptosis: implications for cancer therapy. Int J Biochem Cell Biol 32(2):157–170

    Article  CAS  PubMed  Google Scholar 

  • McCubrey JA et al (2007) Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta 1773(8):1263–1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMahon M et al (2003) Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. J Biol Chem 278(24):21592–21600

    Article  CAS  PubMed  Google Scholar 

  • Meissner A et al (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454(7205):766–770

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miyamoto M et al (2014) Performance comparison of second- and third-generation sequencers using a bacterial genome with two chromosomes. BMC Genomics 15:699

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moi P et al (1994) Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc Natl Acad Sci U S A 91(21):9926–9930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran-Crusio K et al (2011) Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20(1):11–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motohashi H et al (2004) Small Maf proteins serve as transcriptional cofactors for keratinocyte differentiation in the Keap1-Nrf2 regulatory pathway. Proc Natl Acad Sci U S A 101(17):6379–6384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen T et al (2003) Increased protein stability as a mechanism that enhances Nrf2-mediated transcriptional activation of the antioxidant response element. Degradation of Nrf2 by the 26 S proteasome. J Biol Chem 278(7):4536–4541

    Article  CAS  PubMed  Google Scholar 

  • Nguyen T et al (2005) Nrf2 controls constitutive and inducible expression of ARE-driven genes through a dynamic pathway involving nucleocytoplasmic shuttling by Keap1. J Biol Chem 280(37):32485–32492

    Article  CAS  PubMed  Google Scholar 

  • Niu Y et al (2015) Oxidative stress alters global histone modification and DNA methylation. Free Radic Biol Med 82:22–28

    Article  CAS  PubMed  Google Scholar 

  • Opazo C et al (2002) Metalloenzyme-like activity of Alzheimer’s disease beta-amyloid. Cu-dependent catalytic conversion of dopamine, cholesterol, and biological reducing agents to neurotoxic H(2)O(2). J Biol Chem 277(43):40302–40308

    Article  CAS  PubMed  Google Scholar 

  • Park HS, Kim SR, Lee YC (2009) Impact of oxidative stress on lung diseases. Respirology 14(1):27–38

    Article  PubMed  Google Scholar 

  • Pastor WA et al (2011) Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature 473(7347):394–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patchsung M et al (2012) Long interspersed nuclear element-1 hypomethylation and oxidative stress: correlation and bladder cancer diagnostic potential. PLoS One 7(5), e37009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poljsak B, Milisav I (2012) Clinical implications of cellular stress responses. Bosn J Basic Med Sci 12(2):122–126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Psofaki V et al (2010) Promoter methylation status of hMLH1, MGMT, and CDKN2A/p16 in colorectal adenomas. World J Gastroenterol 16(28):3553–3560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pushkarev D, Neff NF, Quake SR (2009) Single-molecule sequencing of an individual human genome. Nat Biotechnol 27(9):847–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raiber EA et al (2012) Genome-wide distribution of 5-formylcytosine in embryonic stem cells is associated with transcription and depends on thymine DNA glycosylase. Genome Biol 13(8):R69

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajendrasozhan S et al (2008) Deacetylases and NF-kappaB in redox regulation of cigarette smoke-induced lung inflammation: epigenetics in pathogenesis of COPD. Antioxid Redox Signal 10(4):799–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy VP et al (2009) Oxidative stress in diabetes and Alzheimer’s disease. J Alzheimers Dis 16(4):763–774

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reuter S et al (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49(11):1603–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts PJ, Der CJ (2007) Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26(22):3291–3310

    Article  CAS  PubMed  Google Scholar 

  • Robertson AB et al (2011) A novel method for the efficient and selective identification of 5-hydroxymethylcytosine in genomic DNA. Nucleic Acids Res 39(8), e55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogenhofer S et al (2013) Histone methylation defines an epigenetic entity in penile squamous cell carcinoma. J Urol 189(3):1117–1122

    Article  CAS  PubMed  Google Scholar 

  • Sasaki M et al (2012) IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics. Nature 488(7413):656–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schreck R, Rieber P, Baeuerle PA (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J 10(8):2247–2258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schweiger MR et al (2009) Genome-wide massively parallel sequencing of formaldehyde fixed-paraffin embedded (FFPE) tumor tissues for copy-number- and mutation-analysis. PLoS One 4(5), e5548

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schweiger MR et al (2011) The power of NGS technologies to delineate the genome organization in cancer: from mutations to structural variations and epigenetic alterations. Cancer Metastasis Rev 30(2):199–210

    Article  CAS  PubMed  Google Scholar 

  • Seligson DB et al (2005) Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435(7046):1262–1266

    Article  CAS  PubMed  Google Scholar 

  • Seligson DB et al (2009) Global levels of histone modifications predict prognosis in different cancers. Am J Pathol 174(5):1619–1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen L et al (2013) Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics. Cell 153(3):692–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song CX et al (2011) Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol 29(1):68–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song CX et al (2013) Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell 153(3):678–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steelman LS et al (2008) Contributions of the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to leukemia. Leukemia 22(4):686–707

    Article  CAS  PubMed  Google Scholar 

  • Stewart D et al (2003) Degradation of transcription factor Nrf2 via the ubiquitin-proteasome pathway and stabilization by cadmium. J Biol Chem 278(4):2396–2402

    Article  CAS  PubMed  Google Scholar 

  • Storz P (2005) Reactive oxygen species in tumor progression. Front Biosci 10:1881–1896

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Motohashi H, Yamamoto M (2013) Toward clinical application of the Keap1-Nrf2 pathway. Trends Pharmacol Sci 34(6):340–346

    Article  CAS  PubMed  Google Scholar 

  • Tada M et al (2005) Hypermethylation of NAD(P)H: quinone oxidoreductase 1 (NQO1) gene in human hepatocellular carcinoma. J Hepatol 42(4):511–519

    Article  CAS  PubMed  Google Scholar 

  • Tahiliani M et al (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324(5929):930–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan NW, Li BF (1990) Interaction of oligonucleotides containing 6-O-methylguanine with human DNA (cytosine-5-)-methyltransferase [published erratum appears in Biochemistry 1992 Aug 4;31(30):7008]. Biochemistry 29(39):9234–9240

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T et al (1999) High incidence of allelic loss on chromosome 5 and inactivation of p15INK4B and p16INK4A tumor suppressor genes in oxystress-induced renal cell carcinoma of rats. Oncogene 18(25):3793–3797

    Article  CAS  PubMed  Google Scholar 

  • Taylor KH et al (2007) Ultradeep bisulfite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing. Cancer Res 67(18):8511–8518

    Article  CAS  PubMed  Google Scholar 

  • Tserga A et al (2012) Association of aberrant DNA methylation with clinicopathological features in breast cancer. Oncol Rep 27(5):1630–1638

    CAS  PubMed  Google Scholar 

  • Tudek B et al (2010) Involvement of oxidatively damaged DNA and repair in cancer development and aging. Am J Transl Res 2(3):254–284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tzao C et al (2009) Prognostic significance of global histone modifications in resected squamous cell carcinoma of the esophagus. Mod Pathol 22(2):252–260

    Article  CAS  PubMed  Google Scholar 

  • Ushio-Fukai M, Nakamura Y (2008) Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer Lett 266(1):37–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uttara B et al (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7(1):65–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valinluck V et al (2004) Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res 32(14):4100–4108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valko M et al (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160(1):1–40

    Article  CAS  PubMed  Google Scholar 

  • Van Den Broeck A et al (2008) Loss of histone H4K20 trimethylation occurs in preneoplasia and influences prognosis of non-small cell lung cancer. Clin Cancer Res 14(22):7237–7245

    Article  CAS  Google Scholar 

  • van Wetering S et al (2002) Reactive oxygen species mediate Rac-induced loss of cell-cell adhesion in primary human endothelial cells. J Cell Sci 115(Pt 9):1837–1846

    PubMed  Google Scholar 

  • Vasanthakumar A et al (2013) Dnmt3b is a haploinsufficient tumor suppressor gene in Myc-induced lymphomagenesis. Blood 121(11):2059–2063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venugopal R, Jaiswal AK (1996) Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene. Proc Natl Acad Sci U S A 93(25):14960–14965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visconti R, Grieco D (2009) New insights on oxidative stress in cancer. Curr Opin Drug Discov Devel 12(2):240–245

    CAS  PubMed  Google Scholar 

  • Wang X et al (2011) ROS-activated p38 MAPK/ERK-Akt cascade plays a central role in palmitic acid-stimulated hepatocyte proliferation. Free Radic Biol Med 51(2):539–551

    Article  PubMed  CAS  Google Scholar 

  • Weber M et al (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37(8):853–862

    Article  CAS  PubMed  Google Scholar 

  • Weber M et al (2007) Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 39(4):457–466

    Article  CAS  PubMed  Google Scholar 

  • Wells PG et al (2009) Oxidative stress in developmental origins of disease: teratogenesis, neurodevelopmental deficits, and cancer. Toxicol Sci 108(1):4–18

    Article  CAS  PubMed  Google Scholar 

  • Wu WS, Wu JR, Hu CT (2008) Signal cross talks for sustained MAPK activation and cell migration: the potential role of reactive oxygen species. Cancer Metastasis Rev 27(2):303–314

    Article  CAS  PubMed  Google Scholar 

  • Xia C et al (2007) Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor. Cancer Res 67(22):10823–10830

    Article  CAS  PubMed  Google Scholar 

  • Ye SF et al (2009) ROS and NF-kappaB are involved in upregulation of IL-8 in A549 cells exposed to multi-walled carbon nanotubes. Biochem Biophys Res Commun 379(2):643–648

    Article  CAS  PubMed  Google Scholar 

  • Zhang DD, Hannink M (2003) Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol Cell Biol 23(22):8137–8151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang DD et al (2004) Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Mol Cell Biol 24(24):10941–10953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L et al (2009) Genome-wide analysis of histone H3 lysine 27 trimethylation by ChIP-chip in gastric cancer patients. J Gastroenterol 44(4):305–312

    Article  PubMed  CAS  Google Scholar 

  • Zhang R et al (2013) Oxidative stress causes epigenetic alteration of CDX1 expression in colorectal cancer cells. Gene 524(2):214–219

    Article  CAS  PubMed  Google Scholar 

  • Zhong S et al (2002) Silencing of GSTP1 gene by CpG island DNA hypermethylation in HBV-associated hepatocellular carcinomas. Clin Cancer Res 8(4):1087–1092

    CAS  PubMed  Google Scholar 

  • Zhou X et al (2008) Arsenite alters global histone H3 methylation. Carcinogenesis 29(9):1831–1836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X et al (2010) Hypoxia induces trimethylated H3 lysine 4 by inhibition of JARID1A demethylase. Cancer Res 70(10):4214–4221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziech D et al (2011) Reactive oxygen species (ROS)-induced genetic and epigenetic alterations in human carcinogenesis. Mutat Res 711(1-2):167–173

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal R. Schweiger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hussong, M., Schweiger, M.R. (2016). Oxidative Stress and Cancer Epigenomics. In: Doerfler, W., Böhm, P. (eds) Epigenetics - A Different Way of Looking at Genetics. Epigenetics and Human Health. Springer, Cham. https://doi.org/10.1007/978-3-319-27186-6_11

Download citation

Publish with us

Policies and ethics