Skip to main content

In Vitro Antimycotic and Biosynthetic Potential of Fungal Endophytes Associated with Schima Wallichii

  • Chapter
  • First Online:
Current Trends in Plant Disease Diagnostics and Management Practices

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Endophytic microorganisms reside inside healthy tissues of plant without causing any apparent disease symptoms and have profound effect on plant fitness by conferring protection to plants against biotic and abiotic stress. The aim of the study was to evaluate the antifungal potential of fungal endophytes associated with Schima wallichii and their potential to produce bioactive compounds according to detection of the conserved ketosynthase domain (KS) of polyketide synthase (PKS) gene. In total 126 endophytic fungal isolates representing 15 morphologically different genera were recovered. Sordariomycetes (50.79 %) was the most dominant class followed by Dothideomycetes (42.06 %) and Eurotiomycetes (7.14 %). Colonization frequency was greater in stem (75.38 %) followed by leaf (61.53 %) and bark (56.92 %). The most frequent colonizing genus were Alternaria, Phomopsis, Colletotrichum, Chaetomium and Penicillium. Fermentation extracts of each strain was screened for their biocontrol ability against Macrophomina phaseolina, Aspergillus flavus and seven phytopathogens of the genus Fusarium. Twelve potential antagonistic strains were identified by amplification of ITS rDNA region. Isolate number EF-18 and EF 49, identified as Penicillium simplicissimum (KJ826510) and Talaromyces verruculosus (KJ826513) respectively showed highest degree of antagonisms against tested pathogens. Further, three pairs of primers (LC1/2c, LC3/5c, KS3/4c) were used to amplify KS domain of NR-type PKS, PR-type PKS and HR-type to prove the biosynthetic potential of the isolates. Nine isolates were found to contain at least two types of KS domain of which seven isolates belong to Eurotiomycetes. Our findings conclude that S. wallichii harbors fungal community with high bioactive potential which further can be explored for the development of biocontrol agents for sustainable development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aly AH, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41:1–16

    Article  Google Scholar 

  • Amnuaykanjanasin A, Punya J, Paungmoung P, Rungrod A, Tachaleat A, Pongpattanakitshote S et al (2005) Diversity of type I polyketide synthase genes in the wood-decay fungus Xylaria sp. BCC 1067. FEMS Microbiol Lett 251:125–136

    Article  CAS  PubMed  Google Scholar 

  • Arnold AE, Henk DA, Eells RL, Lutzoni F, Vilgalys R (2007) Diversity and phylogenetic affinities of foliar fungal endophytes in loblolly pine inferred by culturing and environmental PCR. Mycologia 99(2):185–206

    Article  CAS  PubMed  Google Scholar 

  • Bacon CW, White JF (2000) Microbial endophytes. Dekker, New York, pp 341–388

    Google Scholar 

  • Barliana MI, Suradji EW, Abdulah R, Diantini A, Hatabu T, Nakajima-Shimada J et al (2014) Antiplasmodial properties of kaempferol-3-O-rhamnoside isolated from the leaves of Schima wallichii against chloroquine-resistant Plasmodium falciparum. Biomed Rep 2:579–583

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barnett HL, Hunter BB (1998) Illustrated genera of imperfect fungi, 4th edn. American Pathological Society, St. Paul

    Google Scholar 

  • Beagle-Ristaino JE, Papavizas GC (1985) Biological control of Rhizoctonia stem canker and black scurf of potato. Phytopathology 75:560–564

    Article  Google Scholar 

  • Bhagat J, Kaur A, Sharma M, Saxena AK, Chadha BS (2012) Molecular and functional characterization of endophytic fungi from traditional medicinal plants. World J Microbiol Biotechnol 28:963–971

    Article  CAS  PubMed  Google Scholar 

  • Bills GF, Polishook ID (1991) Microfungi from Carpinus caroliniana. Can J Bot 69:1477–1482

    Article  Google Scholar 

  • Bingle LE, Simpson TJ, Lazarus CM (1999) Ketosynthase domain probes identify two subclasses of polyketide synthase genes. Fungal Genet Biol 26:209–223

    Article  CAS  PubMed  Google Scholar 

  • Cannon PF, Simmons CM (2002) Diversity and host preference of leaf endophytic fungi in the Iwokrama forest reserve, Guyana. Mycologia 94:210–220

    Article  PubMed  Google Scholar 

  • Carroll G (1988) Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbionts. Ecology 69:2–9

    Article  Google Scholar 

  • Cenis JL (1992) Rapid extraction of fungal DNA for PCR amplification. Nucleic Acids Res 20:2380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dewanjee S, Maiti A, Majumdar R, Majumdar A, Mandal SC (2008) Evaluation of antimicrobial activity of hydroalcoholic extract Schima wallichii bark. Pharmacol Online 1:523–528

    Google Scholar 

  • Dewanjee S, Mandal V, Sahu R, Dua TK, Manna A, Mandal SC (2011) Anti-inflammatory activity of a polyphenolic enriched extract of Schima wallichii bark. Nat Prod Res 25:696–703. doi:10.1080/14786410802560732

    Article  CAS  PubMed  Google Scholar 

  • Diantini A, Subarnas A, Lestari K, Halimah E, Susilawati Y et al (2012) Kaempferol-3-O-rhamnoside isolated from the leaves of Schima wallichii Korth. inhibits MCF-7 breast cancer cell proliferation through activation of the caspase cascade pathway. Oncol Lett 3:1069–1072

    Google Scholar 

  • Doty SL, Oakley B, Xin G, Kang JW, Singleton G, Khan Z, Vajzovic A, Staley JT (2009) Diazotrophic endophytes of native black cottonwood and willow. Symbiosis 47:23–33

    Article  CAS  Google Scholar 

  • Ek-Ramos MJ, Zhou W, Valencia CU, Antwl JB, Kalns LL, Morgan GD, Kerns DL, Sword GA (2013) Spatial and temporal variation in fungal endophyte communities isolated from cultivated cotton (Gossypium hirsutum). PLoS ONE 8:e66049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod 69:1121–1124

    Article  CAS  PubMed  Google Scholar 

  • Gelderblom WCA, Kriek NPJ, Marasas WFO, Thiel PG (1991) Toxicity and carcinogenicity of the Fusarium moniliforme metabolite, Fumonisin B1 in rats. Carcinogenesis 12:1247–1251

    Article  CAS  PubMed  Google Scholar 

  • Gond SK, Mishra A, Sharma VK, Verma SK, Kumar J, Kharwar RN et al (2012) Diversity and antimicrobial activity of endophytic fungi isolated from Nyctanthes arbor-tristis, a well-known medicinal plant of India. Mycoscience 53:113–121

    Article  Google Scholar 

  • Hata K, Futai K (1995) Endophytic fungi associated healthy pine needle infested by pine needle gall midge Thecodiplosis japonensis. Can J Bot 73:384–390

    Article  Google Scholar 

  • Hyde KD, Soytong K (2008) The fungal endophyte dilemma. Fungal Divers 36:69–88

    Google Scholar 

  • Iqbal J, Nelson JA, McCulley RL (2013) Fungal endophyte presence and genotype affect plant diversity and soil-to-atmosphere trace gas fluxes. Plant Soil 364:15–27

    Article  CAS  Google Scholar 

  • Kayini A, Pandey RR (2010) Phyllosphere fungi of Alnus nepalensis, Castanopsis hystrix and Schima wallichii in a subtropical forest of north east India. J Am Sci 6(3):118–124

    Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Komai S, Hosoe T, Itabashi T, Nozawa K, Yaguchi T, Fukushima K et al (2006) New penicillide derivatives isolated from Penicillium simplicissimum. J Nat Med 60:185–190

    Article  CAS  Google Scholar 

  • Kusari S, Spiteller M (2012) Metabolomics of endophytic fungi producing associated plant secondary metabolites: progress, challenges and opportunities. In: Roessner U (ed) Metabolomics. In Tech, Rijeka, pp 241–266

    Google Scholar 

  • Kusari S, Zuhlke S, Spiteller M (2009) An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. J Nat Prod 72:2–7

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Zuhlke S, Spiteller M (2011) Effect of artificial reconstitution of the interaction between the plant Camptotheca acuminata and the fungal endophyte Fusarium solani on camptothecin biosynthesis. J Nat Prod 74:764–775

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Hertweck C, Spiteller M (2012a) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19:792–798

    Article  CAS  PubMed  Google Scholar 

  • Kusari S, Verma VC, Lamshoft M, Spiteller M (2012b) An endophytic fungus from Azadirachta indica A. Juss. that produces azadirachtin. World J Microbiol Biotechnol 28:1287–1294

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Huang YJ, Zhong HZ, Su WJ, Qian XM, Shen YM (2010) Endophytes from the pharmaceutical plant, Annona squamosa: isolation, bioactivity, identification and diversity of its polyketide synthase gene. Fungal Divers 41:41–51

    Article  Google Scholar 

  • Miao F, Yang R, Chen DD, Wang Y, Qin BF, Yang XJ et al (2012) Isolation, identification and antimicrobial activities of two secondary metabolites of Talaromyces verruculosus. Molecules 17:14091–14098

    Article  CAS  PubMed  Google Scholar 

  • Mousa WK, Raizada MN (2013) The diversity of anti-microbial secondary metabolites produced by fungal endophytes: an interdisciplinary perspective. Front Microbiol 4:1–18

    Article  Google Scholar 

  • Nagabhyru P, Dinkins RD, Wood CL, Bacon CW, Schardl CL (2013) Tall fescue endophyte effects on tolerance to water-deficit stress. BMC Plant Biol 13:127

    Article  PubMed  PubMed Central  Google Scholar 

  • Nicholson TP, Rudd BA, Dawson M, Lazarus CM, Simpson TJ, Cox RJ (2001) Design and utility of oligonucleotide gene probes for fungal polyketide synthases. Chem Biol 8:157–178

    Article  CAS  PubMed  Google Scholar 

  • Payne GA, Widstrom NW (1992) Aflatoxin in maize. Crit Rev Plant Sci 10:423–440

    Article  CAS  Google Scholar 

  • Pimentel D (2009) Pesticides and pest control. In: Peshinand R, Dhawan AK (eds) Integrated pest management: innovation-development process. Springer, Dordrecht, pp 83–87

    Chapter  Google Scholar 

  • Porras-Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathol 49:291–315

    Article  CAS  PubMed  Google Scholar 

  • Puri SC, Verma V, Amna T, Qazi GN, Spiteller M (2005) An endophytic fungus from Nothapodytes foetida that produces camptothecin. J Nat Prod 68:1717–1719

    Article  CAS  PubMed  Google Scholar 

  • Puri SC, Nazir A, Chawla R, Arora R, Riyaz-Ul-Hasan S, Amna T et al (2006) The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J Biotechnol 122:494–510

    Article  CAS  PubMed  Google Scholar 

  • Qadri M, Rajput R, Abdin MZ, Vishwakarma RA, Riaz-UL-Hassan S (2014) Diversity, molecular phylogeny and bioactive potential of fungal endophytes associated with the Himalayan blue pine (Pinus wallichiana). Microb Ecol 67:877–887

    Article  PubMed  Google Scholar 

  • Rai PK, Lalramnghinglova H (2010) Ethnomedicinal plant resources of Mizoram, India: implication of traditional knowledge in health care system. Ethnobot Leafl 14:274–305

    Google Scholar 

  • Reinhold-Hurek B, Hurek T (2011) Living in side plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443

    Article  PubMed  Google Scholar 

  • Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F et al (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416

    Article  PubMed  Google Scholar 

  • Rojas JD, Sette LD, De Araujo WL, Lopes MSG, Da Silva LF, Furlan RLA et al (2012) The diversity of polyketide synthase genes from sugarcane-derived fungi. Microb Ecol 63:565–577

    Article  CAS  PubMed  Google Scholar 

  • Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Syst 29:319–343

    Article  Google Scholar 

  • Schumann J, Hertweck C (2006) Advances in cloning, functional analysis and heterologous expression of fungal polyketide synthase genes. J Biotechnol 124:690–703

    Article  PubMed  Google Scholar 

  • Shweta S, Zuehlke S, Ramesha BT, Priti V, Mohana Kumar P, Ravikanth G et al (2010) Endophytic fungal strains of Fusarium solani, from Apodytes dimidiate E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry 71:117–122

    Article  CAS  PubMed  Google Scholar 

  • Singh LP, Gill SG, Tuteja N (2011) Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav 6:175–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stierle A, Strobel GA, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae an endophytic fungus of Pacific yew. Science 260:214–216

    Article  CAS  PubMed  Google Scholar 

  • Stone JK, Bacon CW, White JF Jr (2000) An overview of endophytic microbes: endophytism defined. In: Bacon CW, White JF Jr (eds) Microbial endophytes. Marcel Dekker, New York, pp 3–30

    Google Scholar 

  • Stone JK, Polishook JD, White JRJ (2004) Endophytic fungi. In: Mueller G, Bills GF, Foster MS (eds) Biodiversity of fungi: inventory and monitoring methods. Elsevier, Burlington, pp 241–270

    Chapter  Google Scholar 

  • Strobel GA, Daisy B, Castillo U, Harper J (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268

    Article  CAS  PubMed  Google Scholar 

  • Sutton JC (1982) Epidemiologyof wheat head blight and maize ear rot caused by Fusarium graminearum. Can J Plant Pathol 4:195–209

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tayung K, Jha DK (2010) Antimicrobial endophytic fungal assemblages inhabiting bark of Taxus baccata L. of Indo-Burma mega biodiversity hotspot. Indian J Microbiol 50:S74–S81

    Article  Google Scholar 

  • Verma VC, Gond SK, Kumar A, Kharwar RN, Strobel GA (2007) Endophytic mycoflora from leaf, barks, and stems of Azadirachta indica A Juss. from Varanasi India. Microbial Ecol 54:119–125

    Article  CAS  Google Scholar 

  • Verma SK, Gond SK, Mishra A, Sharma VK, Kumar J, Singh DK et al (2014) Impact of environmental variables on the isolation, diversity and antibacterial activity of endophytic fungal communities from Maduca indica Gmel. at different locations in India. Ann Microbiol 64:721–734

    Article  CAS  Google Scholar 

  • Wagenaar MM, Corwin J, Strobel G, Clardy J (2000) Three new cytochalasins produced by an endophytic fungus in the genus Rhinocladiella. J Nat Prod 63:1692–1695

    Article  CAS  PubMed  Google Scholar 

  • Wang FW, Hou ZM, Wang CR, Li P, Shi DH (2008) Bioactive metabolites from Penicillium sp., an endophytic fungus residing in Hopea hainanensis. World J Microbiol Biotechnol 24:2143–2147

    Article  CAS  Google Scholar 

  • White T, Burns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TT (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322

    Google Scholar 

Download references

Acknowledgements

BPS thankful to University Grant Commission (UGC) for financial support as major research project. VKM is thankful to Department of Science and Technology (DST), New Delhi for providing fellowship under DST INSPIRE fellowship (IF 130374). Authors are also thankful to the Department of Biotechnology, New Delhi for establishment of DBT-BIF centre and DBT-State Biotech hub in the Department of Biotechnology, Mizoram University which has been used for the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhim Pratap Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mishra, V.K., Passari, A.K., Singh, B.P. (2016). In Vitro Antimycotic and Biosynthetic Potential of Fungal Endophytes Associated with Schima Wallichii . In: Kumar, P., Gupta, V., Tiwari, A., Kamle, M. (eds) Current Trends in Plant Disease Diagnostics and Management Practices. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-27312-9_16

Download citation

Publish with us

Policies and ethics