Skip to main content

Performance Optimization of EBG-Based Common Mode Filters for Signal Integrity Applications

  • Conference paper
  • First Online:
Simulation-Driven Modeling and Optimization

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 153))

Abstract

Electromagnetic bandgap structures have been shown to be effective in realizing simple and cheap common mode filters for differential interconnect applications in modern high-speed digital electronics. There are two major advantages offered by this technology. The first is that it relies on the standard planar layout methodology for filter design, applied to either a printed circuit board (PCB) or packaging materials and technology. The second advantage is easy analytical design procedure that requires full wave electromagnetic simulations only at a final stage for the filter geometry refinement to precisely meet given performance specifications. In this chapter, the latter aspect is enhanced by introducing an optimization stage that allows for automated adjustment of geometry parameters of the filter in order to improve its performance in terms of achieving the required central frequency, widening the bandwidth, and increasing the band-notch depth. The optimization approach proposed here combines fast response surface approximation modeling for initial design screening and local derivative-free design improvement using pattern search.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sievenpiper, D., Zhang, L., Broas, R.F.J., Alexopulos, N.G., Yablonovitch, E.: High-impedance electromagnetic surfaces with a forbidden frequency band. IEEE Trans. Microw. Theory Tech. 47(11), 2059–2073 (1999)

    Article  Google Scholar 

  2. Tan, M.N.M., Ali, M.T., Subahir, S., Rahman, T.A., Rahim, S.K.A.: Backlobe reduction using mushroom-like EBG structure. In: Proceedings of IEEE Symposium on Wireless Technology and Applications (ISWTA), pp. 206–209, 23–26 September 2012

    Google Scholar 

  3. Chen, X., Su, Z.J., Li, L., Liang, C.H.: Radiation pattern improvement in closely-packed array antenna by using mushroom-like EBG structure. In: Radar Conference 2013, IET International, pp. 1–3, 14–16 April 2013

    Google Scholar 

  4. Neo, C., Lee, Y.H.: Patch antenna enhancement using a mushroom-like EBG structures. In: Antennas and Propagation Society International Symposium (APSURSI), 2013 IEEE, pp.614–615, 7–13 July 2013

    Google Scholar 

  5. Coulombe, M., Koodiani, S.F., Caloz, C.: Compact elongated mushroom (EM)-EBG structure for enhancement of patch antenna array performances. IEEE Trans. Antennas Propag. 58(4), 1076–1086 (2010)

    Article  Google Scholar 

  6. Azad, M.Z., Ali, M.: Novel wideband directional dipole antenna on a mushroom like EBG structure. IEEE Trans. Antennas Propag. 56(5), 1242–1250 (2008)

    Article  Google Scholar 

  7. Qin, J., Ramahi, O.M., Granatstein, V.: Novel planar electromagnetic bandgap structures for wideband noise suppression and EMI reduction in high speed circuits. IEEE Trans. Electromagn. Compat. 49(3), 661–669 (2007)

    Article  Google Scholar 

  8. Wu, T.L., Wang, C.C., Lin, Y.H., Wang, T.K., Chang, G.: A novel power plane with super-wideband elimination of ground bounce noise on high speed circuits. IEEE Microw. Wireless Compon. Lett. 15(3), 174–176 (2005)

    Article  Google Scholar 

  9. Shapharnia, S., Ramahi, O.M.: Electromagnetic interference (EMI) reduction from printed circuit boards (PCB) using electromagnetic bandgap structures. IEEE Trans. Electromagn. Compat. 46(4), 580–587 (2004)

    Article  Google Scholar 

  10. de Paulis, F., Nisanci, M.N., Orlandi, A.: Practical EBG application to multilayer PCB: Impact on power integrity. IEEE Electromagn. Compat. Mag. 1(3), 60–65 (2012)

    Article  Google Scholar 

  11. Wu, T.L., Lin, Y.H., Wang, T.K., Wang, C.C., Chen, S.T.: Electromagnetic bandgap power/ground planes for wideband suppression of ground bounce noise and radiated emission in highspeed circuits. IEEE Trans. Microw. Theory Tech. 53(9), 2935–2942 (2005)

    Article  Google Scholar 

  12. Kamgaing, T., Ramahi, O.M.: A novel power plane with integrated simultaneous switching noise mitigation capability using high impedance surface. IEEE Microw. Wireless Compon. Lett. 13(1), 21–23 (2003)

    Article  Google Scholar 

  13. Abhari, R., Eleftheriades, G.V.: Metallo-dielectric electromagnetic bandgap structures for suppression and isolation of the parallel-plate noise in high-speed circuits. IEEE Trans. Microw. Theory Tech. 51(6), 1629–1639 (2003)

    Article  Google Scholar 

  14. Tavallaee, M. Iacobacci, Abhari, R.: A new approach to the design of power distribution networks containing electromagnetic bandgap structures. Electr. Perform. Elect. Packag. (EPEP) conference, 43–46 (2006)

    Google Scholar 

  15. Kamgaing, T., Ramahi, O.M.: Design and modeling of high impedance electromagnetic surfaces for switching noise suppression in power planes. IEEE Trans. Electromagn. Compat. 47(3), 479–489 (2005)

    Article  Google Scholar 

  16. Kim, K.H., Shutt-Ainé, J.E.: Analysis and modeling of hybrid planar-type electromagnetic-bandgap structures and feasibility study on power distribution network applications. IEEE Trans. Microw. Theory Tech. 56(1), 178–186 (2008)

    Article  Google Scholar 

  17. Swaminathan, M., Engin, A.E.: Power Integrity Modeling and Design for Semiconductors and Systems. Prentice Hall, Boston, USA (2008)

    Google Scholar 

  18. Lei, G.-T., Techentin, R.W., Gilbert, B.K.: High frequency characterization of power/ground-plane structures. IEEE Trans. Microw. Theory Tech. 47, 562–569 (1999)

    Article  Google Scholar 

  19. Berghe, S.V., Olyslager, F., de Zutter, D., Moerloose, J.D., Temmerman, W.: Study of the ground bounce caused by power plane resonances. IEEE Trans. Electromagn. Compat. 40(2), 111–119 (1998)

    Article  Google Scholar 

  20. Cui, W., Fan, J., Ren, Y., Shi, H., Drewniak, J.L., DuBroff, R.E.: DC power-bus noise isolation with power-plane segmentation. IEEE Trans. Electromagn. Compat. 45(2), 436–443 (2003)

    Article  Google Scholar 

  21. Na, N., Jinseong, J., Chun, S., Swaminathan, M., Srinivasan, J.: Modeling and transient simulation of planes in electronic packages. IEEE Trans. Adv. Packag. 23(3), 340–352 (2000)

    Article  Google Scholar 

  22. Xu, M., Hubing, T.H., Chen, J., Van Doren, T.P., Drewniak, J.L., DuBroff, R.E.: Power-bus decoupling with embedded capacitance in printed circuit board design. IEEE Trans. Electromagn. Compat. 45(1), 22–30 (2003)

    Google Scholar 

  23. Huang, W.-T., Lu, C.-H., Lin, D.-B.: The optimal number and location of grounded vias to reduce crosstalk. Prog. Electromagn. Res. 95, 241–266 (2009)

    Article  Google Scholar 

  24. Wu, B., Tsang, L.: Full-wave modeling of multiple vias using differential signaling and shared antipad in multilayered high speed vertical interconnects. Prog. Electromagn. Res. 97, 129–139 (2009)

    Article  Google Scholar 

  25. de Paulis, F., Zhang, Y.-J., Fan, J.: Signal/power integrity analysis for multilayer printed circuit boards using cascaded S-parameters. IEEE Trans. Electromagn. Compat. 52(4), 1008–1018 (2010)

    Article  Google Scholar 

  26. Wu, B., Tsang, L.: Full-wave modeling of multiple vias using differential signaling and shared antipad in multilayered high speed vertical interconnects. Prog. Electromagn. Res. 97, 129–139 (2009)

    Article  Google Scholar 

  27. de Paulis, F., Archambeault, B., Connor, S., Orlandi, A.: Electromagnetic band gap structure for common mode filtering of high speed differential signals. In: Proceedings of IEC DesignCon 2011, Santa Clara, USA, 31 January–3 February 2011

    Google Scholar 

  28. Ricchiuti, V., de Paulis, F., Orlandi, A.: An equivalent circuit model for the identification of the stub resonance due to differential vias on PCB. In: Proceedings of IEEE Workshop on Signal Propagation on Interconnects 2009, SPI ‘09, Strasbourg, France, 12–15 May 2009

    Google Scholar 

  29. Choi, J., Govind, V., Mandrekar, R., Janagama, S., Swaminathan, M.: Noise reduction and design methodology for the mixed-signal systems with alternating impedance electromagnetic bandgap (Al-EBG) structure. In: International Microwave Symposium Digest, Long Beach, CA, pp. 645–651, June 2005

    Google Scholar 

  30. Kim, T.H., Chung, D., Engin, E., Yun, W., Toyota, Y., Swaminathan, M.: A novel synthesis method for designing electromagnetic bandgap (EBG) structures in packaged mixed signal systems. In: Proceedings of 56th Electronic Components and Technology Conference, pp. 1645–1651, 2006

    Google Scholar 

  31. Rajo-Iglesias, E., Caiazzo, M., Inclán-Sánchez, L., Kildal, P-.S.: Comparison of bandgaps of mushroom-type EBG surface and corrugated and strip-type soft surfaces. IET Microw. Antennas Propag. 1(1), 184–189 (2007)

    Google Scholar 

  32. Liang, L., Liang, C.H., Chen, L., Chen, X.: A novel broadband EBG using cascaded mushroom-like structure. Microw. Opt. Technol. Lett. 50, 2167–2170 (2008)

    Article  Google Scholar 

  33. Kamgaing, T., Ramahi, O.M.: Multiband electromagnetic-bandgap structures for applications in small form-factor multichip module packages. IEEE Trans. Microw. Theory Tech. 56(10), 2293–2300 (2008)

    Article  Google Scholar 

  34. Wu, T.L., Fan, J., de Paulis, F., Wang, C.D., Ciccomancini, A., Orlandi, A.: Mitigation of noise coupling in multilayer high-speed PCB: State of the art modeling methodology and EBG technology. IEICE Trans. Commun. E93-B(7), 1678–1689 (2010)

    Article  Google Scholar 

  35. Wang, C.-D., Yu, Y.-M., de Paulis, F., Scogna, A.C., Orlandi, A., Chiou, Y.-P., Wu, T.-L.: Bandwidth enhancement based on optimized via location for multiple vias EBG power/ground planes. IEEE Trans. Compon. Packag. Manuf. Technol. 2(2), 332–341 (2012)

    Article  Google Scholar 

  36. Oh, S.S., Kim, J.M., Kwon, J.H., Yook, J.G.: Enhanced power plane with photonic bandgap structures for wide band suppression of parallel plate resonances. In: IEEE International Symposium on Antennas and Propagation, vol. 2B, pp. 655–658, July 2005

    Google Scholar 

  37. de Paulis, F., Orlandi, A.: Accurate and efficient analysis of planar electromagnetic band-gap structures for power bus noise mitigation in the GHz band. Prog. Electromagn. Res. B 37, 59–80 (2012)

    Article  Google Scholar 

  38. Raimondo, L., de Paulis, F., Orlandi, A.: A simple and efficient design procedure for planar electromagnetic bandgap structures on printed circuit boards. IEEE Trans. Electromagn. Compat. 53(2), 482–490 (2011)

    Article  Google Scholar 

  39. de Paulis, F., Raimondo, L., Orlandi, A.: Impact of shorting vias placement on embedded planar electromagnetic bandgap structures within multilayer printed circuit boards. IEEE Trans. Microw. Theory Tech. 58(7), 1867–1876 (2010)

    Article  Google Scholar 

  40. de Paulis, F., Raimondo, L., Orlandi, A.: IR-Drop analysis and thermal assessment of planar electromagnetic band-gap structures for power integrity applications. IEEE Trans. Adv. Packag. 33(3), 617–622 (2010)

    Article  Google Scholar 

  41. Di Febo, D., Nisanci, M.H., de Paulis, F., Orlandi, A.: Impact of planar electromagnetic band-gap structures on IR-DROP and signal integrity in high speed printed circuit boards. In: Proceedings at IEEE International Symposium on EMC – EMC Europe 2012, Rome, Italy, 17–21 September 2011

    Google Scholar 

  42. Nisanci, M.N., de Paulis, F., Di Febo, D., Orlandi, A.: Practical EBG application to multilayer PCB: Impact on signal integrity. IEEE Electromagn. Compat. Mag. 2(2), 82–87 (2013)

    Article  Google Scholar 

  43. Scogna, A.C., Orlandi, A., Ricchiuti, V.: Signal and power integrity performances of striplines in presence of 2D EBG planes. In: Proceedings of IEEE Workshop on Signal Propagation and Interconnects, Avignon, France, May 2008

    Google Scholar 

  44. de Paulis, F., Orlandi, A.: Signal integrity analysis of single-ended and differential striplines in presence of EBG planar structures. IEEE Microw. Wireless Compon. Lett. 19(9), 554–556 (2009)

    Article  Google Scholar 

  45. de Paulis, F., Orlandi, A., Raimondo, L., Antonini, G.: Fundamental mechanisms of coupling between planar electromagnetic bandgap structures and interconnects in high-speed digital circuits—Part I: Microstrip lines. Presented at the Electromagnetic Compatibility Europe Workshop, Athens, Greece, 11–12 June 2009

    Google Scholar 

  46. de Paulis, F., Raimondo, L., Orlandi, A.: Signal integrity analysis of embedded planar EBG structures. In: Proceedings of Asia-Pacific EMC 2010, Beijing, China, 12–16 April 2010

    Google Scholar 

  47. de Paulis, F., Raimondo, L., Connor, S., Archambeault, B., Orlandi, A.: Design of a common mode filter by using planar electromagnetic bandgap structures. IEEE Trans. Adv. Packag. 33(4), 994–1002, 2010

    Google Scholar 

  48. de Paulis, F., Raimondo, L., Connor, S., Archambeault, B., Orlandi, A.: Compact configuration for common mode filter design based on electromagnetic band-gap structures. IEEE Trans. Electromagn. Compat. 54(3), 646–654 (2012)

    Article  Google Scholar 

  49. de Paulis, F., Raimondo, L., Di Febo, D., Archambeault, B., Connor, S., Orlandi, A.: Experimental validation of common-mode filtering performances of planar electromagnetic band-gap structures. In: Proceedings of IEEE International Symposium on Electromagnetic Compatibility, Ft. Lauderdale, USA, 25–30 July 2010

    Google Scholar 

  50. Archambeault, B.: PCB Design for Real-World EMI Control. Kluwer Academic Publisher, Norwell, MA (2002)

    Book  Google Scholar 

  51. Connor, S., Archambeault, B., Mondal, M.: The impact of common mode currents on signal integrity and EMI in high-speed differential data links. In: Proceedings of IEEE International Symposium on Electromagnetic Compatibility, pp. 1–5, 18–22 August 2008

    Google Scholar 

  52. Jaze, A., Archambeault, B., Connor, S.: Differential mode to common mode conversion on differential signal vias due to asymmetric GND via configurations. In: Proceedings of IEEE International Symposium on Electromagnetic Compatibility, pp. 735–740, 5–9 August 2013

    Google Scholar 

  53. Liu, W.T., Tsai, C.H., Han, T.W., Wu, T.L.: An embedded common-mode suppression filter for GHz differential signals using periodic defect ground plane. IEEE Microw. Wireless Compon. Lett. 18(4), 248–250 (2008)

    Article  Google Scholar 

  54. de Paulis, F., Orlandi, A., Raimondo, L., Archambeault, B., Connor, S.: Common mode filtering performances of planar EBG structures. In: Proceedings of IEEE International Symposium on Electromagnetic Compatibility, pp. 86–90, 17–21 August 2009

    Google Scholar 

  55. de Paulis, F., Raimondo, L., Di Febo, D., Orlandi, A.: Routing strategies for improving common mode filter performances in high speed digital differential interconnects. In: Proceedings of IEEE Workshop on Signal Propagation on Interconnects 2011, SPI ‘11, Naples, Italy, 8–11 May 2011

    Google Scholar 

  56. de Paulis, F., Archambeault, B., Nisanci, M.H., Connor, S., Orlandi, A.: Miniaturization of common mode filter based on EBG patch resonance. In: Proceedings of IEC DesignCon 2012, Santa Clara, USA, 30 January–2 February 2012

    Google Scholar 

  57. Nisanci, M.H., de Paulis, F., Orlandi, A., Archambeault, B., Connor, S.: Optimum geometrical parameters for the EBG-based common mode filter design. In: Proceedings at 2012 IEEE Symposium on Electromagnetic Compatibility, Pittsburgh, PA, USA, 5–10 August 2012

    Google Scholar 

  58. de Paulis,F., Cracraft, M., Di Febo, D., Nisanci, M.H., Connor, S., Archambeault, B., Orlandi, A.: EBG-based common-mode microstrip and stripline filters: Experimental investigation of performances and crosstalk. IEEE Trans. Electromagn. Compat. 57(5), 996–1004 (2015)

    Google Scholar 

  59. de Paulis, F., Cracraft, M., Olivieri, C., Connor, S., Orlandi, A., Archambeault, B.: EBG-based common-mode stripline filters: Experimental investigation on interlayer crosstalk. IEEE Trans. Electromagn. Compat. 57(6), 1416–1424 (2015)

    Google Scholar 

  60. de Paulis, F., Nisanci, M.H., Di Febo, D., Orlandi, A., Connor, S., Cracraft, M., Archambeault, B.: Standalone removable EBG-based common mode filter for high speed differential signaling. In: Proceedings of IEEE International Symposium on Electromagnetic Compatibility, Raleigh NC (USA), pp. 244–249, 3–8 August 2014

    Google Scholar 

  61. Varner, M.A., de Paulis, F., Orlandi, A., Connor, S., Cracraft, M., Archambeault, B., Nisanci, M.H., Di Febo, D.: Removable EBG-based common-mode filter for high-speed signaling: Experimental validation of prototype design. IEEE Trans. Electromagn. Compat. 57(4), 672–679 (2015)

    Article  Google Scholar 

  62. Kodama, C., O'Daniel, C., Cook, J., de Paulis, F., Cracraft, M., Connor, S., Orlandi, A.,. Wheeler, E: Mitigating the threat of crosstalk and unwanted radiation when using electromagnetic bandgap structures to suppress common mode signal propagation in PCB differential interconnects. In: Proceedings of IEEE International Symposium on Electromagnetic Compatibility, Dresden, pp. 622–627, 16–22 August 2015

    Google Scholar 

  63. Computer Simulation Technology, CST Studio Suite 2015, available at www.cst.com

  64. Queipo, N.V., Haftka, R.T., Shyy, W., Goel, T., Vaidynathan, R., Tucker, P.K.: Surrogate-based analysis and optimization. Prog. Aerosp. Sci. 41(1), 1–28 (2005)

    Article  Google Scholar 

  65. Koziel, S.: Computationally efficient multi-fidelity multi-grid design optimization of microwave structures. Appl. Comput. Electromagn. Soc. J. 25(7), 578–586 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Orlandi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Olivieri, C., de Paulis, F., Orlandi, A., Koziel, S. (2016). Performance Optimization of EBG-Based Common Mode Filters for Signal Integrity Applications. In: Koziel, S., Leifsson, L., Yang, XS. (eds) Simulation-Driven Modeling and Optimization. Springer Proceedings in Mathematics & Statistics, vol 153. Springer, Cham. https://doi.org/10.1007/978-3-319-27517-8_5

Download citation

Publish with us

Policies and ethics