Skip to main content

Swellings of the Jaw

  • Chapter
  • First Online:
Head and Neck and Endocrine Surgery
  • 1711 Accesses

Abstract

We are discussing in this chapter the different pathological entities affecting the upper and lower jaws leading to the appearance of a swelling. The common entities are being discussed in further details. A special section is dedicated for mandibular reconstruction including the recent advances and the related challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Heslop IH. Surgical anatomy of the jaws. Ann R Coll Surg Engl. 1963;33:371–86.

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Philipsen HP, Reichart PA. The development and fate of epithelial residues after completion of the human odontogenesis with special reference to the origins of epithelial odontogenic neoplasms, hamartomas and cysts. Oral Biosci Med. 2004;1(3):171–9.

    Google Scholar 

  3. Kanotra S, Kanotra SP, Paul J. Congenital epulis. J Laryngol Otol. 2006;120(2):148–50.

    Article  PubMed  Google Scholar 

  4. Hong J, Yun PY, Chung IH, et al. Long-term follow up on recurrence of 305 ameloblastoma cases. Int J Oral Maxillofac Surg. 2007;36(4):283–8.

    Article  CAS  PubMed  Google Scholar 

  5. Waldron JN, O’Sullivan B, Gullane P, et al. Carcinoma of the maxillary antrum: a retrospective analysis of 110 cases. Radiother Oncol J Eur Soc Ther Radiol Oncol. 2000;57(2):167–73.

    Article  CAS  Google Scholar 

  6. Nikgoo A, Mirafshariyeh SA, Kazeminajad B, Eshkevari PS, Fatemitabar SA. Burkitt’s Lymphoma of maxillary sinuses: review of literature and report of bilateral case. J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg. 2009;67(8):1755–63.

    Article  Google Scholar 

  7. Park SR, Chung SM, Lim JY, Choi EC. Giant cell tumor of the mandible. Clin Exp Otorhinolaryngol. 2012;5(1):49–52.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Bennett JP. Aspects of the history of plastic surgery since the 16th century. J R Soc Med. 1983;76(2):152–6.

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Martin PJ, O’Leary MJ, Hayden RE. Free tissue transfer in oromandibular reconstruction. Necessity or extravagance? Otolaryngol Clin North Am. 1994;27(6):1141–50.

    CAS  PubMed  Google Scholar 

  10. Pogrel MA, Podlesh S, Anthony JP, Alexander J. A comparison of vascularized and nonvascularized bone grafts for reconstruction of mandibular continuity defects. J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg. 1997;55(11):1200–6.

    Article  CAS  Google Scholar 

  11. Foster RD, Anthony JP, Sharma A, Pogrel MA. Vascularized bone flaps versus nonvascularized bone grafts for mandibular reconstruction: an outcome analysis of primary bony union and endosseous implant success. Head Neck. 1999;21(1):66–71.

    Article  CAS  PubMed  Google Scholar 

  12. Cordeiro PG, Hidalgo DA. Soft tissue coverage of mandibular reconstruction plates. Head Neck. 1994;16(2):112–5.

    Article  CAS  PubMed  Google Scholar 

  13. Doty JM, Pienkowski D, Goltz M, Haug RH, Valentino J, Arosarena OA. Biomechanical evaluation of fixation techniques for bridging segmental mandibular defects. Arch Otolaryngol Head Neck Surg. 2004;130(12):1388–92.

    Article  PubMed  Google Scholar 

  14. Moscoso JF, Urken ML. The iliac crest composite flap for oromandibular reconstruction. Otolaryngol Clin North Am. 1994;27(6):1097–117.

    CAS  PubMed  Google Scholar 

  15. Villaret DB, Futran NA. The indications and outcomes in the use of osteocutaneous radial forearm free flap. Head Neck. 2003;25(6):475–81.

    Article  PubMed  Google Scholar 

  16. Forrest C, Boyd B, Manktelow R, Zuker R, Bowen V. The free vascularised iliac crest tissue transfer: donor site complications associated with eighty-two cases. Br J Plast Surg. 1992;45(2):89–93.

    Article  CAS  PubMed  Google Scholar 

  17. Mitsimponas KT, Iliopoulos C, Stockmann P, et al. The free scapular/parascapular flap as a reliable method of reconstruction in the head and neck region: a retrospective analysis of 130 reconstructions performed over a period of 5 years in a single department. J Craniomaxillofac Surg Off Publ Eur Assoc Cranio-Maxillo-Fac Surg. 2014;42(5):536–43.

    Google Scholar 

  18. Urken ML. Composite free flaps in oromandibular reconstruction. Review of the literature. Arch Otolaryngol Head Neck Surg. 1991;117(7):724–32.

    Article  CAS  PubMed  Google Scholar 

  19. Chen YC, Chen CH, Chen PL, Huang IY, Shen YS, Chen CM. Donor site morbidity after harvesting of proximal tibia bone. Head Neck. 2006;28(6):496–500.

    Article  PubMed  Google Scholar 

  20. Chou LB, Mann RA, Coughlin MJ, McPeake 3rd WT, Mizel MS. Stress fracture as a complication of autogenous bone graft harvest from the distal tibia. Foot Ankle Int Am Orthop Foot Ankle Soc Swiss Foot Ankle Soc. 2007;28(2):199–201.

    Article  Google Scholar 

  21. Hartman EH, Spauwen PH, Jansen JA. Donor-site complications in vascularized bone flap surgery. J Invest Surg Off J Acad Surg Res. 2002;15(4):185–97.

    Article  Google Scholar 

  22. Rogers SN, Lakshmiah SR, Narayan B, et al. A comparison of the long-term morbidity following deep circumflex iliac and fibula free flaps for reconstruction following head and neck cancer. Plast Reconstr Surg. 2003;112(6):1517–25; discussion 1526–7.

    Article  PubMed  Google Scholar 

  23. Anthony JP, Rawnsley JD, Benhaim P, Ritter EF, Sadowsky SH, Singer MI. Donor leg morbidity and function after fibula free flap mandible reconstruction. Plast Reconstr Surg. 1995;96(1):146–52.

    Article  CAS  PubMed  Google Scholar 

  24. Skalak R, Fox CF, editors. Tissue engineering. Proceedings for a Workshop held at Granlibakken. Lake Tahoe. California. February 26–29; New York: Alan Liss; 1988.

    Google Scholar 

  25. Hodde J. Naturally occurring scaffolds for soft tissue repair and regeneration. Tissue Eng. 2002;8(2):295–308.

    Article  CAS  PubMed  Google Scholar 

  26. Pellegrini G, Seol YJ, Gruber R, Giannobile WV. Pre-clinical models for oral and periodontal reconstructive therapies. J Dent Res. 2009;88(12):1065–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Novosel EC, Kleinhans C, Kluger PJ. Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev. 2011;63(4–5):300–11.

    Article  CAS  PubMed  Google Scholar 

  28. Friedman CD. Trauma: basic principles of craniofacial bone healing and repair. In: Papel ID, editor. Facial plastic and reconstructive surgery. New York: Thieme Medical Publisher; 2009. p. 920.

    Google Scholar 

  29. Marei MK, Alkhodary MA, Elbackly RM, Zaky SH, Eweida AM, Gad MA, Abdel-Wahed N, Kadah YM. Principles Applications and Technology of Craniofacial Bone Engineering in Integrated Biomaterials in Tissue Engineering. In: Ramalingam M, Haidar Z, Ramakrishna S, Kobayashi H, Haikel Y (eds). Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2012.

    Google Scholar 

  30. Hu WW, Ward BB, Wang Z, Krebsbach PH. Bone regeneration in defects compromised by radiotherapy. J Dent Res. 2010;89(1):77–81.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Reuther T, Schuster T, Mende U, Kubler A. Osteoradionecrosis of the jaws as a side effect of radiotherapy of head and neck tumour patients–a report of a thirty year retrospective review. Int J Oral Maxillofac Surg. 2003;32(3):289–95.

    Article  CAS  PubMed  Google Scholar 

  32. Polykandriotis E, Arkudas A, Horch RE, Sturzl M, Kneser U. Autonomously vascularized cellular constructs in tissue engineering: opening a new perspective for biomedical science. J Cell Mol Med. 2007;11(1):6–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Eweida AM, Nabawi AS, Elhammady HA, et al. Axially vascularized bone substitutes: a systematic review of literature and presentation of a novel model. Arch Orthop Trauma Surg. 2012;132(9):1353–62.

    Article  CAS  PubMed  Google Scholar 

  34. Elshahat A. Correction of craniofacial skeleton contour defects using bioactive glass particles. Egypt J Plast Reconstr Surg. 2006;30:113.

    Google Scholar 

  35. Clokie CM, Sandor GK. Reconstruction of 10 major mandibular defects using bioimplants containing BMP-7. J Can Dent Assoc. 2008;74(1):67–72.

    PubMed  Google Scholar 

  36. Trautvetter W, Kaps C, Schmelzeisen R, Sauerbier S, Sittinger M. Tissue-engineered polymer-based periosteal bone grafts for maxillary sinus augmentation: five-year clinical results. J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg. 2011;69(11):2753–62.

    Article  Google Scholar 

  37. Schuckert KH, Jopp S, Teoh SH. Mandibular defect reconstruction using three-dimensional polycaprolactone scaffold in combination with platelet-rich plasma and recombinant human bone morphogenetic protein-2: de novo synthesis of bone in a single case. Tissue Eng Part A. 2009;15(3):493–9.

    Article  CAS  PubMed  Google Scholar 

  38. Mooney DJ, Mikos AG. Growing new organs. Sci Am. 1999;280(4):60–5.

    Article  CAS  PubMed  Google Scholar 

  39. Laschke MW, Harder Y, Amon M, et al. Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes. Tissue Eng. 2006;12(8):2093–104.

    Article  CAS  PubMed  Google Scholar 

  40. Ford MC, Bertram JP, Hynes SR, et al. A macroporous hydrogel for the coculture of neural progenitor and endothelial cells to form functional vascular networks in vivo. Proc Natl Acad Sci U S A. 2006;103(8):2512–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Kitahara T, Hiromura K, Ikeuchi H, et al. Mesangial cells stimulate differentiation of endothelial cells to form capillary-like networks in a three-dimensional culture system. Nephrol Dial Transplant Off Publ Eur Dialysis and Transplant Assoc – Eur Renal Assoc. 2005;20(1):42–9.

    CAS  Google Scholar 

  42. Nehls V, Schuchardt E, Drenckhahn D. The effect of fibroblasts, vascular smooth muscle cells, and pericytes on sprout formation of endothelial cells in a fibrin gel angiogenesis system. Microvasc Res. 1994;48(3):349–63.

    Article  CAS  PubMed  Google Scholar 

  43. Kaihara S, Borenstein J, Koka R, et al. Silicon micromachining to tissue engineer branched vascular channels for liver fabrication. Tissue Eng. 2000;6(2):105–17.

    Article  CAS  PubMed  Google Scholar 

  44. Peirce SM, Van Gieson EJ, Skalak TC. Multicellular simulation predicts microvascular patterning and in silico tissue assembly. FASEB J Off Publ Fed Am Soc Exp Biol. 2004;18(6):731–3.

    CAS  Google Scholar 

  45. Anderson CR, Ponce AM, Price RJ. Immunohistochemical identification of an extracellular matrix scaffold that microguides capillary sprouting in vivo. J Histochem Cytochem Off J Histochem Soc. 2004;52(8):1063–72.

    Article  CAS  Google Scholar 

  46. Ott HC, Matthiesen TS, Goh SK, et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med. 2008;14(2):213–21.

    Article  CAS  PubMed  Google Scholar 

  47. Linke K, Schanz J, Hansmann J, Walles T, Brunner H, Mertsching H. Engineered liver-like tissue on a capillarized matrix for applied research. Tissue Eng. 2007;13(11):2699–707.

    Article  CAS  PubMed  Google Scholar 

  48. Nguyen LL, D’Amore PA. Cellular interactions in vascular growth and differentiation. Int Rev Cytol. 2001;204:1–48.

    Article  CAS  PubMed  Google Scholar 

  49. Lokmic Z, Mitchell GM. Engineering the microcirculation. Tissue Eng Part B Rev. 2008;14(1):87–103.

    Article  CAS  PubMed  Google Scholar 

  50. Kneser U, Polykandriotis E, Ohnolz J, et al. Engineering of vascularized transplantable bone tissues: induction of axial vascularization in an osteoconductive matrix using an arteriovenous loop. Tissue Eng. 2006;12(7):1721–31.

    Article  CAS  PubMed  Google Scholar 

  51. Cassell OC, Hofer SO, Morrison WA, Knight KR. Vascularisation of tissue-engineered grafts: the regulation of angiogenesis in reconstructive surgery and in disease states. Br J Plast Surg. 2002;55(8):603–10.

    Article  CAS  PubMed  Google Scholar 

  52. Erol OO, Spira M. New capillary bed formation with a surgically constructed arteriovenous fistula. Surg Forum. 1979;30:530–1.

    CAS  PubMed  Google Scholar 

  53. Kneser U, Schaefer DJ, Polykandriotis E, Horch RE. Tissue engineering of bone: the reconstructive surgeon’s point of view. J Cell Mol Med. 2006;10(1):7–19.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Eweida AM, Nabawi AS, Marei MK, Khalil MR, Elhammady HA. Mandibular reconstruction using an axially vascularized tissue-engineered construct. Ann Surg Innov Res. 2011;5:2.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Converse JM, Smahel J, Ballantyne Jr DL, Harper AD. Inosculation of vessels of skin graft and host bed: a fortuitous encounter. Br J Plast Surg. 1975;28(4):274–82.

    Article  CAS  PubMed  Google Scholar 

  56. Laschke MW, Rucker M, Jensen G, et al. Improvement of vascularization of PLGA scaffolds by inosculation of in situ-preformed functional blood vessels with the host microvasculature. Ann Surg. 2008;248(6):939–48.

    Article  PubMed  Google Scholar 

  57. Laschke MW, Vollmar B, Menger MD. Inosculation: connecting the life-sustaining pipelines. Tissue Eng Part B Rev. 2009;15(4):455–65.

    Article  PubMed  Google Scholar 

  58. Lokmic Z, Stillaert F, Morrison WA, Thompson EW, Mitchell GM. An arteriovenous loop in a protected space generates a permanent, highly vascular, tissue-engineered construct. FASEB J Off Publ Fed Am Soc Exp Biol. 2007;21(2):511–22.

    CAS  Google Scholar 

  59. Boos AM, Loew JS, Weigand A, et al. Engineering axially vascularized bone in the sheep arteriovenous-loop model. J Tissue Eng Regen Med. 2013;7(8):654–64.

    Article  CAS  PubMed  Google Scholar 

  60. Horch RE, Beier JP, Kneser U, Arkudas A. Successful human long-term application of in situ bone tissue engineering. J Cell Mol Med. 2014;18(7):1478–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Marei MK, Nagy NB, Saad MS, Zaky SH, Elbackly RM, Eweida AM, Alkhodary MA. Strategy for a Biomimetic Paradigm in Dental and Craniofacial Tissue Engineering, in Biomimetics: Advancing Nanobiomaterials and Tissue Engineering. In: Ramalingam M, Wang X, Chen G, Ma P, Cui F-Z (eds). Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2013.

    Google Scholar 

  62. Hutmacher DW, Loessner D, Rizzi S, Kaplan DL, Mooney DJ, Clements JA. Can tissue engineering concepts advance tumor biology research? Trends Biotechnol. 2010;28(3):125–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Eweida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Eweida, A., Horch, R. (2016). Swellings of the Jaw. In: Sakr, M. (eds) Head and Neck and Endocrine Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-27532-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27532-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27530-7

  • Online ISBN: 978-3-319-27532-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics