Skip to main content

Arithmetic Quantum Unique Ergodicity

  • Chapter
  • First Online:
The Spectrum of Hyperbolic Surfaces

Part of the book series: Universitext ((UTX))

  • 2632 Accesses

Abstract

Let \(S =\varGamma \setminus \mathcal{H}\) be a compact hyperbolic surface (or more generally, of finite area). In this last chapter we shall study the following conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The appearance of the word “quantum” here is explained in the first subsection.

  2. 2.

    I.e., the corresponding set of gradient vectors is linearly independent at almost every point of \(\mathcal{H}\).

  3. 3.

    The coordinates w and \(\overline{w}\) are natural here since we then have \(H = \frac{1} {2}w\overline{w}\).

  4. 4.

    This paragraph is not needed for what comes after it. We shall freely use the ergodicity of the geodesic flow as well as the L 2 Birkhoff theorem, see [50].

  5. 5.

    Note that this is the first time we are invoking the ergodicity of the geodesic flow.

  6. 6.

    This type of property rigidifies the situation.

  7. 7.

    We use here the term ergodic without entering into the details. See later sections or [50] for a definition.

  8. 8.

    The fixed points of matrices in \(\mathrm{SL}(2,\mathbf{Z}\left [1/p\right ])\) form a countable set.

  9. 9.

    Thus, even a precise control on the geodesic flow over an interval [0, T] cannot lead to an estimation on ρ(γ 1(2T), γ 2(2T)) (other than that implied by the triangle inequality). The future is independent of the past; this is a very simple manifestation of deterministic chaos.

References

  1. Nalini Anantharaman, Entropy and the localization of eigenfunctions, Ann. of Math. (2) 168 (2008), no. 2, 435–475.

    Google Scholar 

  2. V. I. Arnol′d, Mathematical methods of classical mechanics, Graduate Texts in Mathematics, vol. 60, Springer-Verlag, New York, 1989, Translated from the 1974 Russian original by K. Vogtmann and A. Weinstein.

    Google Scholar 

  3. Tim Bedford, Michael Keane, and Caroline Series (eds.), Ergodic theory, symbolic dynamics, and hyperbolic spaces (Trieste, April 17–28, 1989), Oxford Science Publications, New York, The Clarendon Press Oxford University Press, 1991.

    Google Scholar 

  4. Jean Bourgain and Elon Lindenstrauss, Entropy of quantum limits, Comm. Math. Phys. 233 (2003), no. 1, 153–171.

    Article  MathSciNet  MATH  Google Scholar 

  5. Yves Colin de Verdière, Ergodicité et fonctions propres du laplacien, Comm. Math. Phys. 102 (1985), no. 3, 497–502.

    Google Scholar 

  6. Harry Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory 1 (1967), 1–49.

    Article  MathSciNet  MATH  Google Scholar 

  7. Paul R. Halmos, Measure Theory, D. Van Nostrand Company, Inc., New York, N.Y., 1950.

    Google Scholar 

  8. Boris Hasselblatt and Anatole Katok, A first course in dynamics, Cambridge University Press, New York, 2003.

    Book  MATH  Google Scholar 

  9. Bernard Host, Nombres normaux, entropie, translations, Israel J. Math. 91 (1995), no. 1–3, 419–428.

    Article  MathSciNet  MATH  Google Scholar 

  10. Elon Lindenstrauss, Invariant measures and arithmetic quantum unique ergodicity, Ann. of Math. (2) 163 (2006), no. 1, 165–219.

    Google Scholar 

  11. André Martinez, An introduction to semiclassical and microlocal analysis, Universitext, Springer-Verlag, New York, 2002.

    Book  MATH  Google Scholar 

  12. Didier Robert, Autour de l’approximation semi-classique, Progress in Mathematics, vol. 68, Birkhäuser Boston Inc., Boston, MA, 1987.

    Google Scholar 

  13. Zeév Rudnick and Peter Sarnak, The behaviour of eigenstates of arithmetic hyperbolic manifolds, Comm. Math. Phys. 161 (1994), no. 1, 195–213.

    Article  MathSciNet  MATH  Google Scholar 

  14. Daniel J. Rudolph, × 2 and × 3 invariant measures and entropy, Ergodic Theory Dynam. Systems 10 (1990), no. 2, 395–406.

    MathSciNet  MATH  Google Scholar 

  15. Jean-Pierre Serre, Arbres, amalgames, SL2, Astérisque, vol. 46, Société Mathématique de France, Paris, 1977.

    Google Scholar 

  16. Lior Silberman and Akshay Venkatesh, On quantum unique ergodicity for locally symmetric spaces, Geom. Funct. Anal. 17 (2007), no. 3, 960–998.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. I. Šnirel′man, Ergodic properties of eigenfunctions, Uspehi Mat. Nauk 29 (1974), no. 6(180), 181–182.

    Google Scholar 

  18. Kannan Soundararajan, Quantum unique ergodicity for \(\mathrm{SL}_{2}(\mathbb{Z})\setminus \mathbb{H}\), Ann. of Math. (2) 172 (2010), no. 2, 1529–1538.

    Google Scholar 

  19. E. T. Whittaker and G. N. Watson, Semiclassical limits for the hyperbolic plane, Duke Math. J. 108 (2001), no. 3, 449–509.

    Article  MathSciNet  Google Scholar 

  20. Steven Zelditch, Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J. 55 (1987), no. 4, 919–941.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bergeron, N. (2016). Arithmetic Quantum Unique Ergodicity. In: The Spectrum of Hyperbolic Surfaces. Universitext. Springer, Cham. https://doi.org/10.1007/978-3-319-27666-3_9

Download citation

Publish with us

Policies and ethics