Skip to main content

Improvement of Industrially Relevant Biological Activities in Mucoromycotina Fungi

  • Chapter
  • First Online:
Gene Expression Systems in Fungi: Advancements and Applications

Abstract

Mucoromycotina contain several biotechnologically important fungi, primarily in the orders Mucorales and Mortierellales, which are considered as excellent producers of lipases and proteases, organic acids, alcohol, carotenoids and polyunsaturated fatty acids. Here, we overview gene expression and metabolic engineering studies performed to improve industrially relevant activities in different Mucoromycotina fungi in the past decade. Genetic transformation methods used to manipulate these fungi, especially Rhizopus oryzae, Mucor circinelloides and Mortierella alpina, and promoters used successfully to express genes in them will be reviewed. Concerning the improvement of production of hydrolytic enzymes special attention has been paid to the heterologous expression of lipases, which are among the best characterized enzymes in these fungi. Main achievements in the improvement of lactic acid and fumaric acid production by Rhizopus enzymes have also been summarized. Expression of endogenous and exogenous terpenoid and carotenoid biosynthetic genes to enhance and modify the carotene production of Mucor circinelloides has been detailed. Finally, homologous and heterologous expression of Mucoromycotina fatty acid desaturases and elongases in fungi and plants has been overviewed with special attention to the production of arachidonic acid and γ-linolenic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe T, Sakuradani E, Ueda T, Shimizu S. Identification of mutation sites on Δ5 desaturase genes from Mortierella alpina 1S-4 mutants. J Biosci Bioeng. 2005;99(3):296–9.

    Article  CAS  Google Scholar 

  • Abe T, Sakuradani E, Asano T, Kanamaru H, Shimizu S. Functional characterization of Δ9 and ω9 desaturase genes in Mortierella alpina 1S-4 and its derivative mutants. Appl Microbiol Biotechnol. 2006;70:711–9.

    Article  CAS  Google Scholar 

  • Abe A, Oda Y, Asano K, Sone T. Rhizopus delemar is the proper name for Rhizopus oryzae fumaric-malic acid producers. Mycologia. 2007;99:714–22.

    Article  CAS  Google Scholar 

  • Adrio JL, Demain AL. Recombinant organisms for production of industrial products. Bioeng Bugs. 2010;1:116–31.

    Article  Google Scholar 

  • Almeida ERA, Cerdá-Olmedo E. Gene expression in the regulation of carotene biosynthesis in Phycomyces. Curr Genet. 2008;53:129–37.

    Article  CAS  Google Scholar 

  • Álvarez V, Rodríguez-Sáiz M, de la Fuente JL, Gudiña EJ, Godio RP, Martín JF, Barredo JL. The crtS gene of Xanthophyllomyces dendrorhous encodes a novel cytochrome-P450 hydroxylase involved in the conversion of β-carotene into astaxanthin and other xanthophylls. Fungal Genet Biol. 2006;43:261–72.

    Article  CAS  Google Scholar 

  • Ando A, Sakuradani E, Horinaka K, Ogawa J, Shimizu S. Transformation of an oleaginous zygomycete Mortierella alpina 1S-4 with the carboxin resistance gene conferred by mutation of the iron-sulfur subunit of succinate dehydrogenase. Curr Genet. 2009a;55:349–56.

    Article  CAS  Google Scholar 

  • Ando A, Sumida Y, Negoro H, Suroto DA, Ogawa J, Sakuradani E, Shimizu S. Establishment of Agrobacterium tumefaciens-mediated transformation of an oleaginous fungus, Mortierella alpina 1S-4, and its application for eicosapentaenoic acid producer breeding. Appl Environ Microbiol. 2009b;75(17):5529–35.

    Article  CAS  Google Scholar 

  • Appel KF, Wolff AM, Arnau J. A multicopy vector system for genetic studies in Mucor circinelloides and other zygomycetes. Mol Genet Genomics. 2004;271:595–602.

    Article  CAS  Google Scholar 

  • Arnau C, Ramon R, Casas C, Valero F. Optimization of the heterologous production of a Rhizopus oryzae lipase in Pichia pastoris system using mixed substrates on controlled fed-batch bioprocess. Enzyme Microb Tech. 2010;46:494–500.

    Article  CAS  Google Scholar 

  • Babu PD, Bhakyaraj R, Vidhyalakshmi R. A low cost nutritious food “tempeh”- a review. World J Dairy Food Sci. 2009;4:22–7.

    Google Scholar 

  • Bartsch S, Schimek C, Wöstemeyer J. Microprojectile bombardment as a reliable method for transformation of the mucoralean fungus Absidia glauca. Mycoscience. 2002;43:213–7.

    Article  CAS  Google Scholar 

  • Bellou S, Moustogianni A, Makri A, Aggelis G. Lipids containing polyunsaturated fatty acids synthesized by Zygomycetes grown on glycerol. Appl Biochem Biotechnol. 2012;166:146–58.

    Article  CAS  Google Scholar 

  • Calero J, Verdugo C, Luna D, Sancho ED, Luna C, Posadillo A, Bautista FM, Romero AA. Selective ethanolysis of sunflower oil with Lipozyme RM IM, an immobilized Rhizomucor miehei lipase, to obtain a biodiesel-like biofuel, which avoids glycerol production through the monoglyceride formation. N Biotechnol. 2014;31:596–601.

    Article  CAS  Google Scholar 

  • Chen R, Tsuda S, Matsui K, Fukuchi-Mizutani M, Ochiai M, Shimizu S, Sakuradani E, Aoki T, Imaizumi R, Ayabe S, Tanaka Y. Production of γ-linolenic acid in Lotus japonicus and Vigna angularis by expression of the Δ6-fatty-acid desaturase gene isolated from Mortierella alpina. Plant Sci. 2005;169:599–605.

    Article  CAS  Google Scholar 

  • Chen R, Matsui K, Ogawa M, Oe M, Ochiai M, Kawashima H, Sakuradani E, Shimizu S, Ishimoto M, Hayashi M, Murooka Y, Tanaka Y. Expression of Δ6, Δ5 desaturase and GLELO elongase genes from Mortierella alpina for production of arachidonic acid in soybean [Glycine max (L.) Merrill] seeds. Plant Sci. 2006;170:399–406.

    Article  CAS  Google Scholar 

  • Chuang L-T, Chen D-C, Nicaud J-M, Madzak C, Chen Y-H, Huang Y-S. Co-expression of heterologous desaturase genes in Yarrowia lipolytica. N Biotechnol. 2010;27:277–82.

    Article  CAS  Google Scholar 

  • Cos O, Resina D, Ferrer P, Montesinos JL, Valero F. Heterologous production of Rhizopus oryzae lipase in Pichia pastoris using the alcohol oxidase and formaldehyde dehydrogenase promoters in batch and fed-batch cultures. Biochem Eng J. 2005a;26:86–94.

    Article  CAS  Google Scholar 

  • Cos O, Serrano A, Montesinos JL, Ferrer P, Cregg JM, Valero F. Combined effect of the methanol utilization (Mut) phenotype and gene dosage on recombinant protein production in Pichia pastoris fed-batch cultures. J Biotechnol. 2005b;116:321–35.

    Article  CAS  Google Scholar 

  • Csernetics Á, Nagy G, Iturriaga EA, Szekeres A, Eslava AP, Vágvölgyi C, Papp T. Expression of three isoprenoid biosynthesis genes and their effects on the carotenoid production of the zygomycete Mucor circinelloides. Fungal Genet Biol. 2011;48:696–703.

    Article  CAS  Google Scholar 

  • Csernetics Á, Tóth E, Farkas A, Nagy G, Bencsik O, Vágvölgyi C, Papp T. Expression of Xanthophyllomyces dendrorhous cytochrome-P450 hydroxylase and reductase in Mucor circinelloides. World J Microbiol Biotechnol. 2015;31:321–36.

    Article  CAS  Google Scholar 

  • Dufossé L. Food grade pigments. Food Technol Biotechnol. 2006;44:313–21.

    Google Scholar 

  • Dyal SD, Narine SS. Implication for the use of Mortierella fungi in the industrial production of essential fatty acids. Food Res Int. 2005;38:445–67.

    Article  CAS  Google Scholar 

  • Ferrarezi AL, Ohe THK, Borges JP, Brito RR, Siqueira MR, Vendramini PH, Quilles Jr JC, da Costa Carreira Nunes C, Bonilla-Rodriguez GO, Boscolo M, Da-Silva R, Gomes E. Production and characterization of lipases and immobilization of whole cell of the thermophilic Thermomucor indicae seudaticae N31 for transesterification reaction. J Mol Catal B: Enzym. 2014;107:106–13.

    Article  CAS  Google Scholar 

  • Ferreira JA, Lennartsson PR, Edebo L, Taherzadeh MJ. Zygomycetes-based biorefinery: Present status and future prospects. Bioresour Technol. 2013;135:523–32.

    Article  CAS  Google Scholar 

  • Gao J, Skeen RS (2002) Promoter sequence of 3-phosphoglycerate kinase gene 1 of lactic acid producing fungus Rhizopus oryzae and a method of expressing a gene of interest in fungal species. US Patent 6,465,635.

    Google Scholar 

  • Garre V, Barredo JL, Iturriaga EA. Transformation of Mucor circinelloides f. lusitanicus protoplasts. In: van den Berg MA, Maruthachalam K, editors. Genetic Transformation Systems in Fungi, vol. 1. Switzerland: Springer; 2015. p. 49–59.

    Google Scholar 

  • Goldberg I, Rokem JS, Pines O. Organic acids: old metabolites, new themes. J Chem Technol Biotechnol. 2006;81:1601–11.

    Article  CAS  Google Scholar 

  • González-Hernández GA, Herrera-Estrella L, Rocha-Ramírez V, Roncero MIG, Gutierez-Corona JF. Biolistic transformation of the Zygomycete Mucor circinelloides. Mycol Res. 1997;101:953–6.

    Article  Google Scholar 

  • Guillén M, Benaiges MD, Valero F. Comparison of the biochemical properties of a recombinant lipase extract from Rhizopus oryzae expressed in Pichia pastoris with a native extract. Biochem Eng J. 2011;54:117–23.

    Article  CAS  Google Scholar 

  • Gutiérrez A, López-García S, Garre V. High reliability transformation of the basal fungus Mucor circinelloides by electroporation. J Microbiol Methods. 2011;84:442–6.

    Article  CAS  Google Scholar 

  • Hao G, Chen H, Du K, Huang X, Song Y, Gu Z, Wang L, Zhang H, Chen W, Chen YQ. Increased fatty acid unsaturation and production of arachidonic acid by homologous over-expression of the mitochondrial malic enzyme in Mortierella alpina. Biotechnol Lett. 2014a;36:1827–34.

    Article  CAS  Google Scholar 

  • Hao G, Chen H, Wang L, Gu Z, Song Y, Zhang H, Chen W, Chen YQ. Role of malic enzyme during fatty acid synthesis in the oleaginous fungus Mortierella alpina. Appl Environ Microbiol. 2014b;80:2672–8.

    Article  CAS  Google Scholar 

  • Hermet A, Méheust D, Mounier J, Barbier G, Jany JL. Molecular systematics in the genus Mucor with special regards to species encountered in cheese. Fungal Biol. 2012;116:692–705.

    Article  Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, et al. A higher-level phylogenetic classification of the Fungi. Mycol Res. 2007;111:509–47.

    Article  Google Scholar 

  • Hsiao NW, Chen Y, Kuan YC, Lee YC, Lee SK, Chan HH, Kao CH. Purification and characterization of an aspartic protease from the Rhizopus oryzae protease extract, Peptidase R. Electron J Biotechnol. 2014;17:89–94.

    Article  CAS  Google Scholar 

  • Huang Y-S, Chaudhary S, Thurmond JM, Jr Bobik EG, Yuan L, Chan GM, Kirchner SJ, Mukerji P, Knutzon DS. Cloning of Δ12- and Δ6-desaturases from Mortierella alpina and recombinant production of γ-linolenic acid in Saccharomyces cerevisiae. Lipids. 1999;34:649–59.

    Article  CAS  Google Scholar 

  • Huang D, Han S, Han Z, Lin Y. Biodiesel production catalyzed by Rhizomucor miehei lipase-displaying Pichia pastoris whole cells in an isooctane system. Biochem Eng J. 2012;63:10–4.

    Article  CAS  Google Scholar 

  • Huang J, Xia J, Yang Z, Guan F, Cui D, Guan G, Jiang W, Li Y. Improved production of a recombinant Rhizomucor miehei lipase expressed in Pichia pastoris and its application for conversion of microalgae oil to biodiesel. Biotechnol Biofuels. 2014;7:111.

    Article  CAS  Google Scholar 

  • Huge-Jensen B, Andreasen F, Christensen T, Christensen M, Thim L, Boel E. Rhizomucor miehei triglyceride lipase is processed and secreted from transformed Aspergillus oryzae. Lipids. 1989;24:781–5.

    Article  CAS  Google Scholar 

  • Ibrahim AS, Skory CD. Genetic manipulation of Zygomycetes. In: Kavanagh K, editor. Medical mycology: cellular and molecular techniques. New York: Wiley; 2007. p. 305–26.

    Google Scholar 

  • Ilmén M, Koivuranta K, Ruohonen L, Rajgarhia V, Suominen P, Penttilä M. Production of L-lactic acid by the yeast Candida sonorensis expressing heterologous bacterial and fungal lactate dehydrogenases. Microb Cell Fact. 2013;12:53.

    Article  CAS  Google Scholar 

  • John RP, Madhavan Nampoothiri KM, Pandey A. Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Appl Microbiol Biotechnol. 2007;74:524–34.

    Article  CAS  Google Scholar 

  • Kavadia A, Komaitis M, Chevalot I, Blanchard F, Marc I, Aggelis G. Lipid and γ-linolenic acid accumulation in strains of Zygomycetes growing on glucose. J Am Oil Chem Soc. 2001;78:341–6.

    Article  CAS  Google Scholar 

  • Khongto B, Laoteng K, Tongta A. Fermentation process development of recombinant Hansenula polymorpha for gamma-linolenic acid production. J Microbiol Biotechnol. 2010;20:1555–62.

    Article  CAS  Google Scholar 

  • Kikukawa H, Sakuradani E, Kishino S, Park S-B, Ando A, Shima J, Ochiai M, Shimizu S, Ogawa J. Characterization of a trifunctional fatty acid desaturase from oleaginous filamentous fungus Mortierella alpina 1S-4 using a yeast expression system. J Biosci Bioeng. 2013;116:672–6.

    Article  CAS  Google Scholar 

  • Knutzon DS, Thurmond JM, Huang YS, Chaudhary S, Bobik EG, Jr Chan GM, Kirchner SJ, Mukerji P. Identification of a Δ5-desaturase from Mortierella alpina by heterologous expression in bakers’ yeast and canola. J Biol Chem. 1998;273:29360–6.

    Article  CAS  Google Scholar 

  • Kotogán A, Németh B, Vágvölgyi C, Papp T, Takó M. Screening for extracellular lipase enzymes with transesterification capacity in Mucoromycotina strains. Food Technol Biotechnol. 2014;52:73–82.

    Google Scholar 

  • Krisch J, Bencsik O, Papp T, Vágvölgyi C, Takó M. Characterization of a β-glucosidase with transgalactosylation capacity from the zygomycete Rhizomucor miehei. Bioresour Technol. 2012;114:555–60.

    Article  CAS  Google Scholar 

  • Laoteng K, Mannontarat R, Tanticharoen M, Cheevadhanarak S. Δ6-desaturase of Mucor rouxii with high similarity to plant Δ6-desaturase and its heterologous expression in Saccharomyces cerevisiae. Biochem Biophy Res Commun. 2000;279:17–22.

    Article  CAS  Google Scholar 

  • Laoteng K, Ruenwai R, Tanticharoen M, Cheevadhanarak S. Genetic modification of essential fatty acids biosynthesis in Hansenula polymorpha. FEMS Microbiol Lett. 2005;245:169–78.

    Article  CAS  Google Scholar 

  • Lardizabal K, Effertz R, Levering C, Mai J, Pedroso MC, Jury T, Aasen E, Gruys K, Bennett K. Expression of Umbelopsis ramanniana DGAT2A in seed increases oil in soybean. Plant Physiol. 2008;148:89–96.

    Article  CAS  Google Scholar 

  • Larsen GG, Appel KF, Wolff AM, Nielsen J, Arnau J. Characterization of the Mucor circinelloides regulated promoter gpd1P. Curr Genet. 2004;45:225–34.

    Article  CAS  Google Scholar 

  • Li MC, Liu L, Hu GW, Xing LJ. Expression of Mortierella isabellina delta6-fatty acid desaturase gene in gamma-linolenic acid production in transgenic tobacco. Sheng Wu Gong Cheng Xue Bao. 2003;19:178–84.

    CAS  Google Scholar 

  • Li MC, Bu YP, Wang GK, Hu GW, Xing LJ. Heterologous expression of Mortierella isabellina delta6-fatty acid desaturase gene in soybean. Yi Chuan Xue Bao. 2004a;8:858–63.

    Google Scholar 

  • Li MC, Sun Y, Zhang Q, Xing LJ. Expression of delta6-fatty acid desaturase gene from Mortierella alpina in Pichia pastoris. Sheng Wu Gong Cheng Xue Bao. 2004b;20(1):34–8.

    Google Scholar 

  • Li MC, Li H, Wei DS, Xing LJ. Cloning and molecular characterization of Δ12-fatty acid desaturase gene from Mortierella isabellina. World J Gastroenterol. 2006;12(21):3373–9.

    Article  CAS  Google Scholar 

  • Li Z, Li X, Wang Y, Wang Y, Wang F, Jiang J. Expression and characterization of recombinant Rhizopus oryzae lipase for enzymatic biodiesel production. Bioresour Technol. 2011;102(20):9810–3.

    Article  CAS  Google Scholar 

  • Li Z, Sun H, Mo X, Li X, Xu B, Tian P. Overexpression of malic enzyme (ME) of Mucor circinelloides improved lipid accumulation in engineered Rhodotorula glutinis. Appl Microbiol Biotechnol. 2013;97:4927–36.

    Article  CAS  Google Scholar 

  • Liaud N, Rosso M-N, Fabre N, Crapart S, Herpoël-Gimbert I, Sigoillot J-C, Raouche S, Levasseur A. L-lactic acid production by Aspergillus brasiliensis overexpressing the heterologous ldha gene from Rhizopus oryzae. Microb Cell Fact. 2015;14:66.

    Article  CAS  Google Scholar 

  • Liu J, Li D, Yin Y, Wang H, Li M, Yu L. Δ6-Desaturase from Mortierella alpina: cDNA cloning, expression, and phylogenetic analysis. Biotechnol Lett. 2011;33:1985–91.

    Article  CAS  Google Scholar 

  • Lu H, Chai YR, Zhang XK, Lei TG, Li JN. Cloning and expression of a delta6-fatty acid desaturase gene from Rhizopus stolonifer in Saccharomyces cerevisiae. Wei Sheng Wu Xue Bao. 2007;47:59–63.

    CAS  Google Scholar 

  • Lu H, Li J-N, Chai Y-R, Zhang X-K. Identification and characterization of a novel Δ6-fatty acid desaturase gene from Rhizopus nigricans. Mol Biol Rep. 2009;36:2291–7.

    Article  CAS  Google Scholar 

  • MacKenzie DA, Carter AT, Wongwathanarat P, Eagles J, Salt J, Archer DB. A third fatty acid Δ9-desaturase from Mortierella alpina with a different substrate specificity to ole1p and ole2p. Microbiology. 2002;148:1725–35.

    Article  CAS  Google Scholar 

  • Mertens JA, Skory CD, Ibrahim AS. Plasmids for expression of heterologous proteins in Rhizopus oryzae. Arch Microbiol. 2006;186:41–50.

    Article  CAS  Google Scholar 

  • Meussen BJ, de Graaff L, Sanders JP, Weusthuis RA. Metabolic engineering of Rhizopus oryzae for the production of platform chemicals. Appl Microbiol Biotechnol. 2012;94:875–86.

    Article  CAS  Google Scholar 

  • Michielse CB, Salim K, Ragas P, Ram AFJ, Kudla B, Jarry B, Punt J, van den Hondel CAMJJ. Development of a system for integrative and stable transformation of the zygomycete Rhizopus oryzae by Agrobacterium-mediated DNA transfer. Mol Gen Genomics. 2004;271:499–510.

    Article  CAS  Google Scholar 

  • Minning S, Schmidt-Dannert C, Schmid RD. Functional expression of Rhizopus oryzae lipase in Pichia pastoris: high-level production and some properties. J Biotechnol. 1998;66:147–56.

    Article  CAS  Google Scholar 

  • Minning S, Serrano A, Ferrer P, Solá C, Schmid RD, Valero F. Optimization of the high-level production of Rhizopus oryzae lipase in Pichia pastoris. J Biotechnol. 2001;86:59–70.

    Article  CAS  Google Scholar 

  • Mohamed SA, Abdel-Mageed HM, Tayel SA, El-Nabrawi MA, Fahmy AS. Characterization of Mucor racemosus lipase with potential application for the treatment of cellulite. Process Biochem. 2011;46:642–8.

    Article  CAS  Google Scholar 

  • Monfort A, Cordero L, Maicas S, Polaina J. Transformation of Mucor miehei results in plasmid deletion and phenotypic instability. FEMS Microbiol Lett. 2003;224:101–6.

    Article  CAS  Google Scholar 

  • Nagy G, Farkas A, Csernetics Á, Bencsik O, Szekeres A, Nyilasi I, Vágvölgyi C, Papp T. Transcription analysis of the three HMG-CoA reductase genes of Mucor circinelloides. BMC Microbiol. 2014;14:93.

    Article  CAS  Google Scholar 

  • Navarro E, Lorca-Pascual JM, Quiles-Rosillo MD, Nicolas FE, Garre V, Torres-Martinez S, Ruiz-Vazquez RM. A negative regulator of light-inducible carotenogenesis in Mucor circinelloides. Mol Gen Genomics. 2001;266:463–70.

    Article  CAS  Google Scholar 

  • Nicolás-Molina FE, Navarro E, Ruiz-Vázquez RM. Lycopene over-accumulation by disruption of the negative regulator gene crgA in Mucor circinelloides. Appl Microbiol Biotechnol. 2008;78:131–7.

    Article  CAS  Google Scholar 

  • Nouani A, Belhamiche N, Slamani R, Belbraouet S, Fazouane F, Bellal MM. Extracellular protease from Mucor pusillus: purification and characterization. Int J Dairy Technol. 2009;62(1):112–7.

    Article  CAS  Google Scholar 

  • Nout MR, Aidoo KE. Asian fungal fermented food. In: Hofrichter M, editor. Industrial applications, the mycota, vol. 10. Berlin: Springer; 2002. p. 23–47.

    Chapter  Google Scholar 

  • Nyilasi I, Ács K, Papp T, Vágvölgyi C. Agrobacterium tumefaciens-mediated transformation of Mucor circinelloides. Folia Microbiol. 2005;50:415–20.

    Article  CAS  Google Scholar 

  • Nyilasi I, Papp T, Csernetics Á, Vágvölgyi C. Agrobacterium tumefaciens-mediated transformation of the zygomycete fungus, Backusella lamprospora. J Basic Microbiol. 2008;48:59–64.

    Article  CAS  Google Scholar 

  • Nykiforuk CL, Shewmaker C, Harry I, Yurchenko OP, Zhang M, Reed C, Oinam GS, Zaplachinski S, Fidantsef A, Boothe JG, Moloney MM. High level accumulation of gamma linolenic acid (C18:3Δ6.9,12 cis) in transgenic safflower (Carthamus tinctorius) seeds. Transgenic Res. 2012;21:367–81.

    Article  CAS  Google Scholar 

  • Obraztsova IN, Prados N, Holzmann K, Avalos J, Cerda-Olmedo E. Genetic damage following introduction of DNA in Phycomyces. Fungal Genet Biol. 2004;41:68–180.

    Article  CAS  Google Scholar 

  • Okuda T, Ando A, Sakuradani E, Kikukawa H, Kamada N, Ochiai M, Shima J, Ogawa J. Characterization of galactose-dependent promoters from an oleaginous fungus Mortierella alpina 1S–4. Curr Genet. 2014a;60:175–82.

    Google Scholar 

  • Okuda T, Ando A, Sakuradani E, Kikukawa H, Kamada N, Ochiai M, Shima J, Ogawa J. Selection and characterization of promoters based on genomic approach for the molecular breeding of oleaginous fungus Mortierella alpina 1S–4. Curr Genet. 2014b;60:183–91.

    Article  CAS  Google Scholar 

  • Okuda T, Ando A, Negoro H, Muratsubaki T, Kikukawa H, Sakamoto T, Sakuradani E, Shimizu S, Ogawa J. Eicosapentaenoic acid (EPA) production by an oleaginous fungus Mortierella alpina expressing heterologous Δ17-desaturase gene under ordinary temperature. Eur J Lipid Sci Technol. 2015;117:1919–27.

    Google Scholar 

  • Papp T, Velayos A, Bartók T, Eslava AP, Vágvölgyi C, Iturriaga EA. Heterologous expression of astaxanthin biosynthesis genes in Mucor circinelloides. Appl Microbiol Biotechnol. 2006;69:526–31.

    Article  CAS  Google Scholar 

  • Papp T, Nyilasi I, Csernetics Á, Galgóczy L, Vágvölgyi C. Molecular studies on Zygomycetes fungi causing opportunistic infections. Rev Med Microbiol. 2008;19:39–46.

    Article  Google Scholar 

  • Papp T, Csernetics Á, Nyilasi I, Ábrók M, Vágvölgyi C. Genetic transformation of Zygomycetes fungi. In: Rai MK, Kövics GJ, editors. Progress in Mycology. Netherlands: Springer; 2010. p. 75–94.

    Chapter  Google Scholar 

  • Papp T, Csernetics Á, Nyilasi I, Vágvölgyi C, Iturriaga EA. Integration of a bacterial β-carotene ketolase gene into the Mucor circinelloides genome by the Agrobacterium tumefaciens-mediated transformation method. In: Barredo J-L, editor. Microbial carotenoids from fungi: methods and protocols, Methods in molecular biology, vol. 898. New York: Humana Press Inc; 2012. p. 123–32.

    Chapter  Google Scholar 

  • Papp T, Csernetics Á, Nagy G, Bencsik O, Iturriaga EA, Eslava AP, Vágvölgyi C. Canthaxanthin production with modified Mucor circinelloides strains. Appl Microbiol Biotechnol. 2013;97:4937–50.

    Article  CAS  Google Scholar 

  • Park EY, Anh PN, Okuda N. Bioconversion of waste office paper to L(+)-lactic acid by the filamentous fungus Rhizopus oryzae. Bioresour Technol. 2004;93(1):77–83.

    Article  CAS  Google Scholar 

  • Parker-Barnes JM, Das T, Bobik E, Leonard AE, Thurmond JM, Chaung L-T, Huang Y-S, Mukerji P. Identification and characterization of an enzyme involved in the elongation of n-6 and n-3 polyunsaturated fatty acids. Proc Natl Acad Sci U S A. 2000;97:8284–9.

    Article  CAS  Google Scholar 

  • Ramón R, Ferrer P, Valero F. Sorbitol co-feeding reduces metabolic burden caused by the overexpression of a Rhizopus oryzae lipase in Pichia pastoris. J Biotechnol. 2007;130:39–46.

    Article  CAS  Google Scholar 

  • Resina D, Serrano A, Valero F, Ferrer P. Expression of a Rhizopus oryzae lipase in Pichia pastoris under control of the nitrogen source-regulated formaldehyde dehydrogenase promoter. J Biotechnol. 2004;109:103–13.

    Article  CAS  Google Scholar 

  • Resina D, Maurer M, Cos O, Arnau C, Carnicer M, Marx H, Gasser B, Valero F, Mattanovich D, Ferrer P. Engineering of bottlenecks in Rhizopus oryzae lipase production in Pichia pastoris using the nitrogen source-regulated FLD1 promoter. N Biotechnol. 2009;25(6):396–403.

    Article  CAS  Google Scholar 

  • Roa Engel CA, Straathof AJ, Zijlmans TW, van Gulik WM, van der Wielen LA. Fumaric acid production by fermentation. Appl Microbiol Biotechnol. 2008;78:379–89.

    Article  CAS  Google Scholar 

  • Rodrigues RC, Fernandez-Lafuente R. Lipase from Rhizomucor miehei as an industrial biocatalyst in chemical process. J Mol Catal B: Enzym. 2010;64:1–22.

    Article  CAS  Google Scholar 

  • Rodríguez-Frómeta RA, Gutiérrez A, Torres-Martínez S, Garre V. Malic enzyme activity is not the only bottleneck for lipid accumulation in the oleaginous fungus Mucor circinelloides. Appl Microbiol Biotechnol. 2013;97:3063–72.

    Article  CAS  Google Scholar 

  • Rodríguez-Sáiz M, Paz B, de la Fuente JL, López-Nieto MJ, Cabri W, Barredo JL. Blakeslea trispora genes for carotene biosynthesis. Appl Environ Microbiol. 2004;70(9):5589–94.

    Article  CAS  Google Scholar 

  • Ruenwai R, Cheevadhanarak S, Laoteng K. Overexpression of acetyl-CoA carboxylase gene of Mucor rouxii enhanced fatty acid content in Hansenula polymorpha. Mol Biotechnol. 2009;42:327–32.

    Article  CAS  Google Scholar 

  • Ruenwai R, Neiss A, Laoteng K, Vongsangnak W, Dalfard AB, Cheevadhanarak S, Petranovic D, Nielsen J. Heterologous production of polyunsaturated fatty acids in Saccharomyces cerevisiae causes a global transcriptional response resulting in reduced proteasomal activity and increased oxidative stress. Biotechnol J. 2011;6:343–56.

    Article  CAS  Google Scholar 

  • Sakuradani E, Shimizu S. Gene cloning and functional analysis of a second Δ6-fatty acid desaturase from an arachidonic acid-producing Mortierella fungus. Biosci Biotechnol Biochem. 2003;67:704–11.

    Article  CAS  Google Scholar 

  • Sakuradani E, Kobayashi M, Ashikari T, Shimizu S. Identification of a Δ12-fatty acid desaturase from an arachidonic acid-producing Mortierella fungus by heterologous expression in the yeast Saccharomyces cerevisiae and the fungus Aspergillus oryzae. Eur J Biochem. 1999a;261:812–20.

    Article  CAS  Google Scholar 

  • Sakuradani E, Kobayashi M, Shimizu S. Δ9-Fatty acid desaturase from an arachidonic acid-producing fungus. Unique gene sequence and its heterologous expression in a fungus, Aspergillus. Eur J Biochem. 1999b;260:208–16.

    Article  CAS  Google Scholar 

  • Sakuradani E, Kobayashi M, Shimizu S. Δ6-Fatty acid desaturase from an arachidonic acid-producing Mortierella fungus. Gene cloning and its heterologous expression in a fungus, Aspergillus. Gene. 1999c;238:445–53.

    Article  CAS  Google Scholar 

  • Sakuradani E, Murata S, Kanamaru H, Shimizu S. Functional analysis of a fatty acid elongase from arachidonic acid-producing Mortierella alpina 1S-4. Appl Microbiol Biotechnol. 2008;81:497–503.

    Article  CAS  Google Scholar 

  • Sakuradani E, Ando A, Shimizu S, Ogawa J. Metabolic engineering for the production of polyunsaturated fatty acids by oleaginous fungus Mortierella alpina 1S-4. J Biosci Bioeng. 2013;116:417–22.

    Article  CAS  Google Scholar 

  • Sanz C, Velayos A, Álvarez MI, Benito EP, Eslava AP. Functional analysis of the Phycomyces carRA gene encoding the enzymes phytoene synthase and lycopene cyclase. PLoS One. 2011;6, e23102.

    Article  CAS  Google Scholar 

  • Schilde C, Wöstemeyer J, Burmester A. Green fluorescent protein as a reporter for gene expression in the mucoralean fungus Absidia glauca. Arch Microbiol. 2001;175:1–7.

    Article  CAS  Google Scholar 

  • Serrano A, Cereghino GL, Ferrer P, Cregg JM, Valero F. Overexpression of a Rhizopus oryzae lipase in Pichia pastoris strains containing multiple copies of the target gene. In: Merten O-W et al., editors. Recombinant protein production with prokaryotic and eukaryotic cell, A comparative view on host physiology. Dordrecht: Kluwer Academic; 2001. p. 259–67.

    Chapter  Google Scholar 

  • Silva F, Navarro E, Peñaranda A, Murcia‐Flores L, Torres‐Martínez S, Garre V. A RING‐finger protein regulates carotenogenesis via proteolysis‐independent ubiquitylation of a white collar‐1‐like activator. Mol Microbiol. 2008;70:1026–36.

    CAS  Google Scholar 

  • Skory CD. Isolation and expression of lactate dehydrogenase genes from Rhizopus oryzae. Appl Environ Microbiol. 2000;66(6):2343–8.

    Article  CAS  Google Scholar 

  • Skory CD. Lactic acid production by Saccharomyces cerevisiae expressing a Rhizopus oryzae lactate dehydrogenase gene. J Ind Microbiol Biotechnol. 2003;30:22–7.

    Article  CAS  Google Scholar 

  • Skory CD. Lactic acid production by Rhizopus oryzae transformants with modified lactate dehydrogenase activity. Appl Microbiol Biotechnol. 2004;64:237–42.

    Article  CAS  Google Scholar 

  • Skory CD, Ibrahim AS. Native and modified lactate dehydrogenase expression in a fumaric acid producing isolate Rhizopus oryzae 99–880. Curr Genet. 2007;52:23–33.

    Article  CAS  Google Scholar 

  • Song P, Li S, Ding Y, Xu Q, Huang H. Expression and characterization of fumarase (FUMR) from Rhizopus oryzae. Fungal Biol. 2011;115:49–53.

    Article  CAS  Google Scholar 

  • Sun J, Sun XX, Tang PW, Yuan QP. Molecular cloning and functional expression of two key carotene synthetic genes derived from Blakeslea trispora into E. coli for increased β-carotene production. Biotechnol Lett. 2012;34:2077–82.

    Article  CAS  Google Scholar 

  • Surribas A, Stahn R, Montesinos JL, Enfors SO, Valero F, Jahic M. Production of a Rhizopus oryzae lipase from Pichia pastoris using alternative operational strategies. J Biotechnol. 2007;130:291–9.

    Article  CAS  Google Scholar 

  • Takaya N, Yanai K, Hourichi H, Ohta A, Takagi M. Analysis of the 3-phosphoglycerate kinase 2 promoter in Rhizopus niveus. Gene. 1995;152:121–5.

    Article  CAS  Google Scholar 

  • Takeno S, Sakuradani E, Murata S, Inohara-Ochiai M, Kawashima H, Ashikari T, Shimizu S. Molecular evidence that the rate-limiting step for the biosynthesis of arachidonic acid in Mortierella alpina is at the level of an elongase. Lipids. 2005a;40:25–30.

    Article  CAS  Google Scholar 

  • Takeno S, Sakuradani E, Tomi A, Inohara-Ochiai M, Kawashima H, Ashikari T, Shimizu S. Improvement of the fatty acid composition of an oil-producing filamentous fungus, Mortierella alpina 1S-4, through RNA interference with Δ12-desaturase gene expression. Appl Environ Microbiol. 2005b;71:5124–8.

    Article  CAS  Google Scholar 

  • Takó M, Tóth A, Nagy LG, Krisch J, Vágvölgyi C, Papp T. A new β-glucosidase gene from the zygomycete fungus Rhizomucor miehei. Anton Leeuw Int J G. 2010;97:1–10.

    Google Scholar 

  • Tavares S, Grotkjær T, Obsen T, Haslam RP, Napier JA, Gunnarsson N. Metabolic engineering of Saccharomyces cerevisiae for production of eicosapentaenoic acid, using a novel Δ5-desaturase from Paramecium tetraurelia. Appl Environ Microbiol. 2011;77:1854–61.

    Article  CAS  Google Scholar 

  • Turner TL, Zhang GC, Kim SR, Subramaniam V, Steffen D, Skory CD, Jang JY, Yu BJ, Jin YS. Lactic acid production from xylose by engineered Saccharomyces cerevisiae without PDC or ADH deletion. Appl Microbiol Biotechnol. 2015;99(19):8023–33.

    Google Scholar 

  • Ülker S, Karaoğlu ŞA. Purification and characterization of an extracellular lipase from Mucor hiemalis f. corticola isolated from soil. J Biosci Bioeng. 2012;114:385–90.

    Article  CAS  Google Scholar 

  • Velayos A, Blasco JL, Alvarez MI, Iturriaga EA, Eslava AP. Blue-light regulation of the phytoene dehydrogenase (carB) gene expression in Mucor circinelloides. Planta. 2000a;210:938–46.

    Article  CAS  Google Scholar 

  • Velayos A, Eslava AP, Iturriaga EA. A bifunctional enzyme with lycopene cyclase and phytoene synthase activities is encoded by the carRP gene of Mucor circinelloides. Eur J Biochem. 2000b;267:1–12.

    Article  Google Scholar 

  • Wan X, Liang Z, Gong Y, Zhang Y, Jiang M. Characterization of three Δ9-fatty acid desaturases with distinct substrate specificity from an oleaginous fungus Cunninghamella echinulata. Mol Biol Rep. 2013;40:4483–9.

    Article  CAS  Google Scholar 

  • Wang DP, Li MC, Wei DS, Zhang YH, Xing LJ. Cloning and expression of delta6-desaturase gene from Thamnidium elegans in Saccharomyces cerevisiae. Wei Sheng Wu Xue Bao. 2006;46:74–9.

    CAS  Google Scholar 

  • Wang D, Li M, Wei D, Cai Y, Zhang Y, Xing L. Identification and functional characterization of the delta 6-fatty acid desaturase gene from Thamnidium elegans. J Eukaryot Microbiol. 2007;54(1):110–7.

    Article  CAS  Google Scholar 

  • Wang P, Wan X, Zhang Y, Jiang M. Production of γ-linolenic acid using a novel heterologous expression system in the oleaginous yeast Lipomyces kononenkoae. Biotechnol Lett. 2011;33:1993–8.

    Article  CAS  Google Scholar 

  • Wei D, Zhou H, Yang Z, Zhang X, Xing L, Li M. Identification of a novel delta9-fatty acid desaturase gene and its promoter from oil-producing fungus Rhizopus arrhizus. Mol Biol Rep. 2009;36:177–86.

    Article  CAS  Google Scholar 

  • Wei D-S, Zhang Y-H, Xing L-J, Li M-C. Agrobacterium rhizogenes-mediated transformation of a high oil-producing filamentous fungus Umbelopsis isabellina. J Appl Genet. 2010;51:225–32.

    Article  Google Scholar 

  • Wei L, Liu J, Qi H, Wen J. Engineering Scheffersomyces stipitis for fumaric acid production from xylose. Bioresour Technol. 2015;187:246–54.

    Article  CAS  Google Scholar 

  • Wolff AM, Arnau J. Cloning of glyceraldehyde-3-phosphate dehydrogenase-encoding genes in Mucor circinelloides (syn. racemosus) and use of the gpd1 promoter in recombinant protein production. Fungal Genet Biol. 2002;35:21–9.

    Article  CAS  Google Scholar 

  • Xu G, Liu L, Chen J. Reconstruction of cytosolic fumaric acid biosynthetic pathways in Saccharomyces cerevisiae. Microb Cell Fact. 2012a;11:24–9.

    Article  CAS  Google Scholar 

  • Xu G, Zou W, Chen X, Xu N, Liu L, Chen J. Fumaric acid production in Saccharomyces cerevisiae by in silico aided metabolic engineering. PLoS One. 2012b;7, e52086.

    Article  CAS  Google Scholar 

  • Xu G, Chen X, Liu L, Jiang L. Fumaric acid production in Saccharomyces cerevisiae by simultaneous use of oxidative and reductive routes. Bioresour Technol. 2013;148:91–6.

    Article  CAS  Google Scholar 

  • Xu S, Zhou Z, Du G, Zhou J, Chen J. Efficient transformation of Rhizopus delemar by electroporation of germinated spores. J Microbiol Methods. 2014;103:58–63.

    Article  CAS  Google Scholar 

  • Yadav AK, Chaudhari AB, Kothari RM. Bioconversion of renewable resources into lactic acid: an industrial view. Crit Rev Biotechnol. 2011;31:1–19.

    Article  CAS  Google Scholar 

  • Yang M, Yu XW, Zheng H, Sha C, Zhao C, Qian M, Xu Y. Role of N-linked glycosylation in the secretion and enzymatic properties of Rhizopus chinensis lipase expressed in Pichia pastoris. Microb Cell Fact. 2015;14:40.

    Article  CAS  Google Scholar 

  • Yegin S, Fernandez-Lahore M, Salgado AJG, Guvenc U, Goksungur Y, Tari C. Aspartic proteinases from Mucor spp. in cheese manufacturing. Appl Microbiol Biotechnol. 2011;89:949–60.

    Article  CAS  Google Scholar 

  • Yu XW, Wang LL, Xu Y. Rhizopus chinensis lipase: gene cloning, expression in Pichia pastoris and properties. J Mol Catal B Enzym. 2009;57:304–11.

    Article  CAS  Google Scholar 

  • Yu XW, Tan NJ, Xiao R, Xu Y. Engineering a disulfide bond in the lid hinge region of Rhizopus chinensis lipase: increased thermostability and altered acyl chain length specificity. PLoS One. 2012a;7, e46388.

    Article  CAS  Google Scholar 

  • Yu XW, Wang R, Zhang M, Xu Y, Xiao R. Enhanced thermostability of a Rhizopus chinensis lipase by in vivo recombination in Pichia pastoris. Microb Cell Fact. 2012b;11:1475–2859.

    Article  CAS  Google Scholar 

  • Yu XW, Sha C, Guo YL, Xiao R, Xu Y. High-level expression and characterization of a chimeric lipase from Rhizopus oryzae for biodiesel production. Biotechnol Biofuels. 2013;6:29.

    Article  CAS  Google Scholar 

  • Zhang B, Yang S-T. Metabolic engineering of Rhizopus oryzae: Effects of overexpressing fumR gene on cell growth and fumaric acid biosynthesis from glucose. Process Biochem. 2012;47:2159–65.

    Article  CAS  Google Scholar 

  • Zhang Q, Li MC, Sun Y, Ma HT, Ren Y, Xing LJ. Cloning and heterologous expression of a novel delta6-desaturase gene from Rhizopus arrhizus NK030037. Yi Chuan Xue Bao. 2004;31:740–9.

    CAS  Google Scholar 

  • Zhang Q, Li MC, Sun Y, Chen YW, Zhang B, Xing LJ. Heteroexpression of Rhizopus arrhizus delta6-fatty acid desaturase gene in Pichia pastoris. Sheng Wu Gong Cheng Xue Bao. 2005;21:871–7.

    CAS  Google Scholar 

  • Zhang Y, Adams IP, Ratledge C. Malic enzyme: the controlling activity for lipid production? Overexpression of malic enzyme in Mucor circinelloides leads to a 2.5-fold increase in lipid accumulation. Microbiology. 2007a;153:2013–25.

    Article  CAS  Google Scholar 

  • Zhang ZY, Jin B, Kelly JM. Production of lactic acid from renewable materials by Rhizopus fungi. Biochem Eng J. 2007b;35:251–63.

    Article  CAS  Google Scholar 

  • Zhang Q, Zhang L, Ding Z, Wang Z, Shi G. Metabolic engineering of wild acid-resistant yeast for L-lactic acid production. Sheng Wu Gong Cheng Xue Bao. 2011;27:1024–31.

    CAS  Google Scholar 

  • Zhang B, Skory CD, Yang ST. Metabolic engineering of Rhizopus oryzae: effects of overexpressing pyc and pepc genes on fumaric acid biosynthesis from glucose. Metab Eng. 2012;14:512–20.

    Article  CAS  Google Scholar 

  • Zhang B, Chen H, Li M, Gu Z, Song Y, Ratledge C, Chen YQ, Zhang H, Chen W. Genetic engineering of Yarrowia lipolytica for enhanced production of trans-10, cis-12 conjugated linoleic acid. Microb Cell Fact. 2013;12:70.

    Article  CAS  Google Scholar 

  • Zhu Y, Zhang B-B. Molecular cloning and functional characterization of a Δ6-fatty acid desaturase gene from Rhizopus oryzae. J Basic Microbiol. 2013;53:773–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants OTKA NN106394 and the Hungarian-Slovak TÉT_12_SK-1-2013-0007. MT is a grantee of postdoctoral grant OTKA PD 112234; ÁC and TP are grantees of the Postdoctoral Research Programme (Postdoc-16, 45.0.080) and the J. Bolyai Research Scholarship of the Hungarian Academy of Sciences, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Papp Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Papp, T., Nyilasi, I., Csernetics, Á., Nagy, G., Takó, M., Vágvölgyi, C. (2016). Improvement of Industrially Relevant Biological Activities in Mucoromycotina Fungi. In: Schmoll, M., Dattenböck, C. (eds) Gene Expression Systems in Fungi: Advancements and Applications. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-27951-0_4

Download citation

Publish with us

Policies and ethics