Skip to main content

Trajectories Through the Disease Process: Cross Sectional and Longitudinal Studies

  • Chapter
  • First Online:
Foundations of Biomedical Knowledge Representation

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9521))

Abstract

This paper explores the use of two different techniques for building models of disease progression from clinical data. Firstly, it explores the use of non-stationary dynamic Bayesian networks to model disease progression where the underlying model changes over time (as is common with many diseases where some tissue or organ becomes damaged throughout the duration of disease progression. Secondly, the fitting of trajectories through cross-sectional data in order to build models of progression from larger cohorts but without any stamps. The methods are applied to simulated data and real clinical data based on visual field tests from sufferers of glaucoma, the second largest cause of blindness in the world. Results demonstrate the importance of integrating cross-sectional and longitudinal data, both of which offer different advantages to understanding disease progression, and the use of models that account for changing underlying structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, B.D.O., Moore, J.B.: Optimal Filtering. Prentice-Hall, Englewood Cliffs (1979)

    Google Scholar 

  2. Bilmes, J.: A gentle tutorial on the em algorithm and its application to parameter estimation for gaussian mixture and hidden Markov models. Technical report TR-97-021, ICSI (1997)

    Google Scholar 

  3. Box, G.E.P., Jenkins, G.M.: Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco (1970)

    MATH  Google Scholar 

  4. Castelo, R., Siebes, A.: Priors on network structures: biasing the search for Bayesian networks. Int. J. Approximate Reasoning 24, 39–57 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ceccon, S., Crabb, D., Garway-Heath, D., Tucker, A.: Non-stationary clustering Bayesian networks for Glaucoma. In: Proceedings of the Workshop on Machine Learning for Clincial Data Analysis, ICML 2012 (2012)

    Google Scholar 

  6. Fanfani, R.: Pooling time-series and cross-section data: a review. Eur. Rev. Agric. Econ. 2(1), 63–85 (1974)

    Article  Google Scholar 

  7. Floyd, R.W.: Algorithm 97: shortest path. Commun. ACM 5(6), 345 (1962)

    Google Scholar 

  8. Frank, A., Asuncion, A.: UCI machine learning repository. University of California, School of Information and Computer Science, Irvine, CA (2010). http://archive.ics.uci.edu/ml. Accessed 11 October 2012

  9. Friedman, N., Murphy, K.P., Russell, S.J.: Learning the structure of dynamic probabilistic networks. In: Proceedings of the 14th Annual Conference on Uncertainty in AI, pp. 139–147 (1998)

    Google Scholar 

  10. Ghahramani, Z.: Learning dynamic Bayesian networks. In: Giles, C.L., Gori, M. (eds.) IIASS-EMFCSC-School 1997. LNCS (LNAI), vol. 1387, pp. 168–197. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  11. Grzegorczyk, M., Husmeier, D.: Non-stationary continuous dynamic Bayesian networks. In: Proceedings of the Twenty-Third Annual Conference on Neural Information Processing Systems (NIPS 2009), pp. 682–690. Curran Associates (2009)

    Google Scholar 

  12. Hartigan, J.A., Wong, M.A.: A k-means clustering algorithm. Appl. Stat. 28, 100–108 (1979)

    Article  MATH  Google Scholar 

  13. Heckerman, D., Geiger, D., Chickering, D.: Learning Bayesian networks: the combination of knowledge and statistical data. In: KDD Workshop (1994)

    Google Scholar 

  14. Heijl, A., et al.: Reduction of intraocular pressure and Glaucoma progression: results from the early manifest Glaucoma trial. Arch. Ophthalmol. 120(10), 1268 (2002)

    Article  Google Scholar 

  15. Kass, M.A., et al.: The ocular hypertension treatment study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle Glaucoma. Arch. Ophthalmol. 120(6), 701 (2002)

    Article  Google Scholar 

  16. Kegl, B., et al.: Learning and design of principal curves. IEEE Trans. Pattern Anal. Mach. Intell. 22, 281–297 (2000)

    Article  Google Scholar 

  17. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  18. Klein, L.R.: A Textbook of Econometrics. Row Peterson and Company, New York (1953)

    Google Scholar 

  19. Li, Y., Tucker, A.: Uncovering disease regions using pseudo time-series trajectories on clinical trial data. In: Proceedings of the 3rd IEEE International Conference on BioMedical Engineering and Informatics (BMEI 2010) (2009)

    Google Scholar 

  20. Magwene, P.M., Lizardi, P., Kim, J.: Reconstructing the temporal ordering of biological samples using microarray data. Bioinformatics 19(7), 842–850 (2003)

    Article  Google Scholar 

  21. Pizzarello, L., et al.: VISION 2020: the right to sight: a global initiative to eliminate avoidable blindness. Arch. Ophthalmol. 122(4), 615 (2004)

    Article  Google Scholar 

  22. Prim, R.C.: Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36, 1389–1401 (1957)

    Google Scholar 

  23. Quigley, H.A., Broman, A.T.: The number of people with Glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 90(3), 262 (2006)

    Article  Google Scholar 

  24. Rabiner, L.R.: A tutorial on HMM and selected applications in speech recognition. Proc. IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  25. Robinson, J.W., Hartemink, A.J.: Learning non-stationary dynamic Bayesian networks. J. Mach. Learn. Res. 11, 3647–3680 (2010)

    MATH  MathSciNet  Google Scholar 

  26. Schwarz, G.E.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)

    Article  MATH  Google Scholar 

  27. Seber, G.A.F.: Multivariate Observations. Wiley, Hoboken (1984)

    Book  MATH  Google Scholar 

  28. Skiena, S.S.: Traveling salesman problem. In: The Algorithm Design Manual, pp. 319–322. Springer, New York (1997)

    Google Scholar 

  29. Talih, N., Hengartner, N.: Structural learning with time-varying components: tracking the cross-section of financial time series. J. Roy. Stat. Soc. B 67(3), 321–341 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  30. Theil, H., Goldberger, A.S.: On pure and mixed statistical estimation in economics. Int. Econ. Rev. 2, 1 (1961)

    Article  Google Scholar 

  31. Tucker, A., Garway-Heath, D.: The pseudotemporal bootstrap for predicting Glaucoma from cross-sectional visual field data. IEEE Trans. Inf. Technol. Biomed. 14(1), 79–85 (2010)

    Article  Google Scholar 

  32. Tucker, A., et al.: A spatio-temporal Bayesian network classifier for understanding visual field deterioration. Artif. Intell. Med. 34, 163–177 (2005)

    Article  Google Scholar 

  33. Viswanathan, A.C., Fitzke, F.W., Hitchings, R.A.: Early detection of visual field progression in Glaucoma: a comparison of PROGRESSOR and STATPAC 2. Br. J. Ophthalmol. 81, 1037–1042 (1997)

    Article  Google Scholar 

  34. Xuan, X., Murphy, K.: Modeling changing dependency structure in multivariate time series. In: Proceedings of the 24th Annual International Conference on Machine Learning (ICML 2007), pp. 1055–1062 (2007)

    Google Scholar 

  35. Yanoff, M., Duker, J.S.: Ophthalmology, 2nd edn. Mosby, St. Louis (2003)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Professor David Garway-Heath of Moorfields Eye Hospital and the Institute of Ophthalmology, London for the availability of the Visual Field test data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan Tucker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tucker, A., Li, Y., Ceccon, S., Swift, S. (2015). Trajectories Through the Disease Process: Cross Sectional and Longitudinal Studies. In: Hommersom, A., Lucas, P. (eds) Foundations of Biomedical Knowledge Representation. Lecture Notes in Computer Science(), vol 9521. Springer, Cham. https://doi.org/10.1007/978-3-319-28007-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28007-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28006-6

  • Online ISBN: 978-3-319-28007-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics