Skip to main content

Chimera States in Quantum Mechanics

  • Chapter
  • First Online:
Control of Self-Organizing Nonlinear Systems

Abstract

Classical chimera states are paradigmatic examples of partial synchronization patterns emerging in nonlinear dynamics. These states are characterized by the spatial coexistence of two dramatically different dynamical behaviors, i.e., synchronized and desynchronized dynamics. Our aim in this contribution is to discuss signatures of chimera states in quantum mechanics. We study a network with a ring topology consisting of N coupled quantum Van der Pol oscillators. We describe the emergence of chimera-like quantum correlations in the covariance matrix. Further, we establish the connection of chimera states to quantum information theory by describing the quantum mutual information for a bipartite state of the network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.J. Panaggio, D.M. Abrams, Nonlinearity 28, R67 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  2. Y. Kuramoto, D. Battogtokh, Nonlin. Phen. Complex Syst. 5, 380 (2002)

    Google Scholar 

  3. D.M. Abrams, S.H. Strogatz, Phys. Rev. Lett. 93, 174102 (2004)

    Article  ADS  Google Scholar 

  4. C.R. Laing, Phys. D 238, 1569 (2009)

    Article  MathSciNet  Google Scholar 

  5. A.E. Motter, Nat. Phys. 6, 164 (2010)

    Article  Google Scholar 

  6. O.E. Omel’chenko, M. Wolfrum, Y.L. Maistrenko, Phys. Rev. E 81, 065201 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  7. O.E. Omel’chenko, M. Wolfrum, S. Yanchuk, Y.L. Maistrenko, O. Sudakov, Phys. Rev. E 85, 036210 (2012)

    Article  ADS  Google Scholar 

  8. E.A. Martens, Chaos 20, 043122 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  9. M. Wolfrum, O.E. Omel’chenko, S. Yanchuk, Y.L. Maistrenko, Chaos 21, 013112 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  10. T. Bountis, V. Kanas, J. Hizanidis, A. Bezerianos, Eur. Phys. J. Sp. Top. 223, 721 (2014)

    Article  Google Scholar 

  11. C.R. Laing, Phys. Rev. E 81, 066221 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  12. I. Omelchenko, A. Provata, J. Hizanidis, E. Schöll, P. Hövel, Phys. Rev. E 91, 022917 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  13. I. Omelchenko, Y.L. Maistrenko, P. Hövel, E. Schöll, Phys. Rev. Lett. 106, 234102 (2011)

    Article  ADS  Google Scholar 

  14. I. Omelchenko, B. Riemenschneider, P. Hövel, Y.L. Maistrenko, E. Schöll, Phys. Rev. E 85, 026212 (2012)

    Article  ADS  Google Scholar 

  15. I. Omelchenko, O.E. Omel’chenko, P. Hövel, E. Schöll, Phys. Rev. Lett. 110, 224101 (2013)

    Article  ADS  Google Scholar 

  16. J. Hizanidis, V. Kanas, A. Bezerianos, T. Bountis, Int. J. Bif. Chaos 24, 1450030 (2014)

    Article  MathSciNet  Google Scholar 

  17. A. Vüllings, J. Hizanidis, I. Omelchenko, P. Hövel, New J. Phys. 16, 123039 (2014)

    Article  Google Scholar 

  18. I. Omelchenko, A. Zakharova, P. Hövel, J. Siebert, E. Schöll, Chaos 25, 083104 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  19. D.P. Rosin, D. Rontani, N.D. Haynes, E. Schöll, D.J. Gauthier, Phys. Rev. E 90, 030902(R) (2014)

    Article  ADS  Google Scholar 

  20. S.-I. Shima, Y. Kuramoto, Phys. Rev. E 69, 036213 (2004)

    Article  ADS  Google Scholar 

  21. E.A. Martens, C.R. Laing, S.H. Strogatz, Phys. Rev. Lett. 104, 044101 (2010)

    Article  ADS  Google Scholar 

  22. M.J. Panaggio, D.M. Abrams, Phys. Rev. Lett. 110, 094102 (2013)

    Article  ADS  Google Scholar 

  23. M.J. Panaggio, D.M. Abrams, Phys. Rev. E 91, 022909 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  24. G.C. Sethia, A. Sen, F.M. Atay, Phys. Rev. Lett. 100, 144102 (2008)

    Article  ADS  Google Scholar 

  25. Yu. Maistrenko, A. Vasylenko, O. Sudakov, R. Levchenko, V. Maistrenko, Int. J. Bif. Chaos 24(8), 1440014 (2014)

    Article  MathSciNet  Google Scholar 

  26. J. Xie, E. Knobloch, H.-C. Kao, Phys. Rev. E 90, 022919 (2014)

    Article  ADS  Google Scholar 

  27. G.C. Sethia, A. Sen, G.L. Johnston, Phys. Rev. E 88, 042917 (2013)

    Article  ADS  Google Scholar 

  28. G.C. Sethia, A. Sen, Phys. Rev. Lett. 112, 144101 (2014)

    Article  ADS  Google Scholar 

  29. A. Zakharova, M. Kapeller, E. Schöll, Phys. Rev. Lett. 112, 154101 (2014)

    Article  ADS  Google Scholar 

  30. A. Yeldesbay, A. Pikovsky, M. Rosenblum, Phys. Rev. Lett. 112, 144103 (2014)

    Article  ADS  Google Scholar 

  31. L. Schmidt, K. Krischer, Phys. Rev. Lett. 114, 034101 (2015)

    Article  ADS  Google Scholar 

  32. F. Böhm, A. Zakharova, E. Schöll, K. Lüdge, Phys. Rev. E 91, 040901(R) (2015)

    Article  Google Scholar 

  33. T.-W. Ko, G.B. Ermentrout, Phys. Rev. E 78, 016203 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  34. M. Shanahan, Chaos 20, 013108 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  35. C.R. Laing, K. Rajendran, I.G. Kevrekidis, Chaos 22, 013132 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  36. N. Yao, Z.-G. Huang, Y.-C. Lai, Z. Zheng, Scientific Reports 3, 3522 (2013)

    ADS  Google Scholar 

  37. Y. Zhu, Z. Zheng, J. Yang, Phys. Rev. E 89, 022914 (2014)

    Article  ADS  Google Scholar 

  38. A. Buscarino, M. Frasca, L.V. Gambuzza, P. Hövel, Phys. Rev. E 91, 022817 (2015)

    Article  ADS  Google Scholar 

  39. N.C. Rattenborg, C.J. Amlaner, S.L. Lima, Neurosci. Biobehav. Rev. 24, 817 (2000)

    Article  Google Scholar 

  40. C.R. Laing, C.C. Chow, Neural Comput. 13, 1473 (2001)

    Article  Google Scholar 

  41. H. Sakaguchi, Phys. Rev. E 73, 031907 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  42. A. Rothkegel, K. Lehnertz, New J. Phys. 16, 055006 (2014)

    Article  ADS  Google Scholar 

  43. A.E. Filatova, A.E. Hramov, A.A. Koronovskii, S. Boccaletti, Chaos 18, 023133 (2008)

    Article  ADS  Google Scholar 

  44. J.C. Gonzalez-Avella, M.G. Cosenza, M. San Miguel, Phys. A 399, 24 (2014)

    Google Scholar 

  45. O.E. Omel’chenko, Nonlinearity 26, 2469 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  46. J. Sieber, O.E. Omel’chenko, M. Wolfrum, Phys. Rev. Lett. 112, 054102 (2014)

    Article  ADS  Google Scholar 

  47. C. Bick, E. Martens, New J. Phys. 17, 033030 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  48. A. Hagerstrom, T.E. Murphy, R. Roy, P. Hövel, I. Omelchenko, E. Schöll, Nat. Phys. 8, 658 (2012)

    Article  Google Scholar 

  49. M.R. Tinsley, S. Nkomo, K. Showalter, Nat. Phys. 8, 662 (2012)

    Article  Google Scholar 

  50. S. Nkomo, M.R. Tinsley, K. Showalter, Phys. Rev. Lett. 110, 244102 (2013)

    Article  ADS  Google Scholar 

  51. E.A. Martens, S. Thutupalli, A. Fourrière, O. Hallatschek, Proc. Nat. Acad. Sci. 110, 10563 (2013)

    Article  ADS  Google Scholar 

  52. L. Larger, B. Penkovsky, Y.L. Maistrenko, Phys. Rev. Lett. 111, 054103 (2013)

    Article  ADS  Google Scholar 

  53. L.V. Gambuzza, A. Buscarino, S. Chessari, L. Fortuna, R. Meucci, M. Frasca, Phys. Rev. E 90, 032905 (2014)

    Article  ADS  Google Scholar 

  54. L. Schmidt, K. Schönleber, K. Krischer, V. Garcia-Morales, Chaos 24, 013102 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  55. M. Wickramasinghe, I.Z. Kiss, PLoS ONE 8, e80586 (2013)

    Article  ADS  Google Scholar 

  56. E.A. Viktorov, T. Habruseva, S.P. Hegarty, G. Huyet, B. Kelleher, Phys. Rev. Lett. 112, 224101 (2014)

    Article  ADS  Google Scholar 

  57. N. Lazarides, G. Neofotistos, G.P. Tsironis, Phys. Rev. B 91, 054303 (2015)

    Article  ADS  Google Scholar 

  58. M. Kapitaniak, K. Czolczynski, P. Perlikowski, A. Stefanski, T. Kapitaniak, Phys. Rep. 517, 1 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  59. T.E. Lee, H.R. Sadeghpour, Phys. Rev. Lett. 111, 234101 (2013)

    Article  ADS  Google Scholar 

  60. S. Walter, A. Nunnenkamp, C. Bruder, Phys. Rev. Lett. 112, 094102 (2014)

    Article  ADS  Google Scholar 

  61. M. Ludwig, F. Marquardt, Phys. Rev. Lett. 111, 073603 (2013)

    Article  ADS  Google Scholar 

  62. I. Hermoso de Mendoza, L.A. Pachón, J. Gómez-Gardeñes, D. Zueco, Phys. Rev. E 90, 052904 (2014)

    Article  ADS  Google Scholar 

  63. A. Mari, A. Farace, N. Didier, V. Giovannetti, R. Fazio, Phys. Rev. Lett. 111, 103605 (2013)

    Article  ADS  Google Scholar 

  64. C. Weedbrook, S. Pirandola, R. García-Patrón, N.J. Cerf, T.C. Ralph, J.H. Shapiro, S. Lloyd, Rev. Mod. Phys. 84, 621 (2012)

    Article  ADS  Google Scholar 

  65. S.L. Braunstein, P. van Loock, Rev. Mod. Phys. 77, 513 (2005)

    Article  ADS  Google Scholar 

  66. G. Manzano, F. Galve, G. L. Giorgi, E. Hernández-García, R. Zambrini, Sci. Rep. 3 (2013)

    Google Scholar 

  67. G. Manzano, F. Galve, R. Zambrini, Phys. Rev. A 87, 032114 (2013)

    Article  ADS  Google Scholar 

  68. T.E. Lee, C.K. Chan, S. Wang, Phys. Rev. E 89, 022913 (2014)

    Article  ADS  Google Scholar 

  69. G.L. Giorgi, F. Plastina, G. Francica, R. Zambrini, Phys. Rev. A 88, 042115 (2013)

    Article  ADS  Google Scholar 

  70. V. Ameri, M. Eghbali-Arani, A. Mari, A. Farace, F. Kheirandish, V. Giovannetti, R. Fazio, Phys. Rev. A 91, 012301 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  71. V. Bastidas, I. Omelchenko, A. Zakharova, E. Schöll, T. Brandes, Phys. Rev. E 92, 062924 (2015)

    Google Scholar 

  72. D. Viennot, L. Aubourg, Phys. Lett. A 380 (2016)

    Google Scholar 

  73. L.M. Sieberer, S.D. Huber, E. Altman, S. Diehl, Phys. Rev. Lett. 110, 195301 (2013)

    Article  ADS  Google Scholar 

  74. U.C. Täuber, S. Diehl, Phys. Rev. X 4, 021010 (2014)

    Google Scholar 

  75. G. Adesso, D. Girolami, A. Serafini, Phys. Rev. Lett. 109, 190502 (2012)

    Article  ADS  Google Scholar 

  76. B. Van der Pol, Radio Rev. 1, 701 (1920)

    Google Scholar 

  77. D. Leibfried, R. Blatt, C. Monroe, D. Wineland, Rev. Mod. Phys. 75, 281 (2003)

    Article  ADS  Google Scholar 

  78. D.A. Rodrigues, A.D. Armour, Phys. Rev. Lett. 104, 053601 (2010)

    Article  ADS  Google Scholar 

  79. N. Lörch, J. Qian, A. Clerk, F. Marquardt, K. Hammerer, Phys. Rev. X 4, 011015 (2014)

    Google Scholar 

  80. H.J. Carmichael, Statistical Methods in Quantum Optics 2: Non-Classical Fields (Springer Science & Business Media, 2009)

    Google Scholar 

  81. K.E. Cahill, R.J. Glauber, Phys. Rev. 177, 1857 (1969)

    Article  ADS  Google Scholar 

  82. A. Altland, F. Haake, Phys. Rev. Lett. 108, 073601 (2012)

    Article  ADS  Google Scholar 

  83. J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. Keeling, F. Marchetti, M. Szymańska, R. Andre, J. Staehli et al., Nature 443(7110), 409 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

V.M. Bastidas thanks L. M. Valencia and Y. Sato. The authors acknowledge inspiring discussions with J. Cerrillo, S. Restrepo, G. Schaller, and P. Strasberg. This work was supported by DFG in the framework of SFB 910.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iryna Omelchenko .

Editor information

Editors and Affiliations

Appendix

Appendix

In this appendix we discuss the Gaussian quantum fluctuations of the quartic harmonic oscillator

$$\begin{aligned} H=\frac{p^2}{2m}+\frac{m\omega q^2}{2}+\frac{\lambda }{4}q^4=\omega \left( a^{\dagger }a+\frac{1}{2}\right) +\lambda \left( \frac{1}{4m\omega }\right) ^2(a^{\dagger }+a)^4. \end{aligned}$$
(16.33)

For simplicity, we consider units in such a way that \(\hbar =1\). As in the main text, we consider the decomposition \(a=\tilde{a}+\alpha (t)\), where \(\tilde{a}\) describes quantum fluctuations and \(\alpha (t)\) is the mean field. We now consider the time-dependent displacement operator [81]

$$\begin{aligned} D\left[ \alpha (t)\right]&=\exp \left[ \alpha (t)a^{\dagger }-\alpha ^{*}(t) a\right] =\exp \left[ \alpha (t)\tilde{a}^{\dagger }-\alpha ^{*}(t) \tilde{a}\right] \nonumber \\&=\exp \left[ -\frac{|\alpha (t)|^{2}}{2} \right] \exp \left[ \alpha (t)\tilde{a}^{\dagger }\right] \exp \left[ -\alpha ^{*}(t)\tilde{a}\right] . \end{aligned}$$
(16.34)

Under this Gauge transformation, the Schrödinger equation \(\mathrm {i}\partial _{t}|\varPsi (t)\rangle =H|\varPsi (t)\rangle \) is transformed to \(\mathrm {i}\partial _{t}|\varPsi _{\alpha }(t)\rangle =H^{(\alpha )}(t)|\varPsi _{\alpha }(t)\rangle \), where \(|\varPsi _{\alpha }(t)\rangle =D^{\dagger }\left[ \alpha (t)\right] |\varPsi (t)\rangle \) and

$$\begin{aligned} \hat{H}^{(\alpha )}(t)=D^{\dagger }\left[ \alpha (t)\right] (H-\mathrm {i}\partial _t)D\left[ \alpha (t)\right] . \end{aligned}$$
(16.35)

For later purposes, we need to use the identity

$$\begin{aligned} \mathrm {i}D^{\dagger }\left[ \alpha (t)\right] \partial _t D\left[ \alpha (t)\right] =\frac{\mathrm {i}}{2}[\dot{\alpha }(t)\alpha ^{*}(t)-\alpha (t)\dot{\alpha }^{*}(t)]+\mathrm {i}[\dot{\alpha }(t)\tilde{a}^{\dagger }-\dot{\alpha }^{*}(t)\tilde{a}]. \end{aligned}$$
(16.36)

After some algebraic manipulations we can write

$$\begin{aligned} \hat{H}^{(\alpha )}(t)&=\frac{\lambda }{16}\left( \frac{1}{m\omega }\right) ^2(\tilde{a}^{\dagger }+\tilde{a})^4+\frac{1}{2}\left( \frac{1}{m\omega }\right) ^2(\tilde{a}^{\dagger }+\tilde{a})^3\text {Re}[\alpha (t)] \nonumber \\&+\omega \tilde{a}^{\dagger }\tilde{a}+\frac{3\lambda }{2}\left( \frac{1}{m\omega }\right) ^2(\tilde{a}^{\dagger }+\tilde{a})^2(\text {Re}[\alpha (t)])^{2} \nonumber \\&-\mathrm {i}[\dot{\alpha }(t)\tilde{a}^{\dagger }-\dot{\alpha }^{*}(t)\tilde{a}]+\omega (\alpha ^{*}\tilde{a}+\alpha \tilde{a}^{\dagger })+2\lambda \left( \frac{1}{m\omega }\right) ^2(\tilde{a}^{\dagger }+\tilde{a})(\text {Re}[\alpha (t)])^{3} \nonumber \\&-\frac{\mathrm {i}}{2}[\dot{\alpha }(t)\alpha ^{*}(t)-\alpha (t)\dot{\alpha }^{*}(t)]+\omega |\alpha (t)|^2+\lambda \left( \frac{1}{m\omega }\right) ^2(\text {Re}[\alpha (t)])^{4}. \end{aligned}$$
(16.37)

To study the quantum fluctuations about a semiclassical trajectory, we assume that \(|\alpha (t)|\gg 1\). To obtain the quadratic fluctuations we must neglect the non-Gaussian terms in Eq. (16.37). In addition, the center of the co-moving frame \(\alpha (t)\) must satisfy the condition

$$\begin{aligned} \dot{\alpha }(t)=-\mathrm {i}\left( \omega \alpha (t) +2\lambda \left( \frac{1}{m\omega }\right) ^2(\text {Re}[\alpha (t)])^{3}\right) , \end{aligned}$$
(16.38)

which corresponds to the classical equations of motion. This condition is satisfied if the linear terms in the quantum fluctuations \(\tilde{a}\) of Eq. (16.37) vanish [78, 79]. We can go a step further and define the classical Hamiltonian function

$$\begin{aligned} H(\alpha ,\alpha ^*)&=\omega |\alpha (t)|^2+\lambda \left( \frac{1}{m\omega }\right) ^2(\text {Re}[\alpha (t)])^{4} \nonumber \\&=\omega \alpha ^{*}(t)\alpha (t)+\lambda \left( \frac{1}{m\omega }\right) ^2\left[ \frac{\alpha ^{*}(t)+\alpha (t)}{2}\right] ^{4}, \end{aligned}$$
(16.39)

from which we obtain the equations of motion Eq. (16.38). In so doing we define the Poisson bracket \(\{F(\alpha ,\alpha ^*),G(\alpha ,\alpha ^*)\}=-\mathrm {i}(\partial _{\alpha }F\partial _{\alpha ^{*}}G-\partial _{\alpha }G\partial _{\alpha ^{*}}F)\). By using this definition we obtain the equations of motion Eq. (16.38) as \(\dot{\alpha }(t)=-\mathrm {i}\partial _{\alpha ^{*}}H(\alpha ,\alpha ^*)\).

Now the role of each one of the terms in Eq. (16.37) is clear. In contrast, the quadratic terms give us the first quantum corrections about the semiclassical trajectory. To study these quantum fluctuations we need to study the quadratic Hamiltonian

$$\begin{aligned} \hat{H}_{\text {Q}}^{(\alpha )}(t)=\omega \tilde{a}^{\dagger }\tilde{a}+\frac{3\lambda }{2}\left( \frac{1}{m\omega }\right) ^2(\tilde{a}^{\dagger }+\tilde{a})^2(\text {Re}[\alpha (t)])^{2}+L(\alpha ,\alpha ^*), \end{aligned}$$
(16.40)

where \(L(\alpha ,\alpha ^*)=-\frac{\mathrm {i}}{2}[\dot{\alpha }(t)\alpha ^{*}(t)-\alpha (t)\dot{\alpha }^{*}(t)]+H(\alpha ,\alpha ^*)\) is the Lagrangian.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bastidas, V.M., Omelchenko, I., Zakharova, A., Schöll, E., Brandes, T. (2016). Chimera States in Quantum Mechanics. In: Schöll, E., Klapp, S., Hövel, P. (eds) Control of Self-Organizing Nonlinear Systems. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-28028-8_16

Download citation

Publish with us

Policies and ethics