Skip to main content

Electrostatics and Polarity in 2D Oxides

  • Chapter
  • First Online:
Oxide Materials at the Two-Dimensional Limit

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 234))

Abstract

We review the manifestations of electrostatic interactions, and in particular polarity effects, in oxide ultra-thin films and two-dimensional nano-objects. We discuss the efficiency of various compensation mechanisms such as overall structural transformations, strong lattice relaxations, inhomogeneous charge redistributions, support effects, and/or the formation of 2D or 1D electron/hole gases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weiss W, Ranke W (2002) Surface chemistry and catalysis on well-defined epitaxial iron-oxide layers. Prog Surf Sci 70:1–151

    Article  Google Scholar 

  2. Chen MS, Goodman DW (2008) Ultrathin, ordered oxide films on metal surfaces. J Phys: Condens Matter 20:264013

    Google Scholar 

  3. Freund H-J, Pacchioni G (2008) Oxide ultra-thin films on metals: new materials for the design of supported metal catalysts. Chem Soc Rev 37:2224–2242

    Article  Google Scholar 

  4. Nilius N (2009) Properties of oxide thin films and their adsorption behavior studied by scanning tunneling microscopy and conductance spectroscopy. Surf Sci Rep 64:595–659

    Article  Google Scholar 

  5. Wu Q-H, Fortunelli A, Granozzi G (2009) Preparation, characterisation and structure of Ti and Al ultrathin oxide films on metals. Int Rev Phys Chem 28:517–576

    Article  Google Scholar 

  6. Netzer FP, Allegretti F, Surnev S (2010) Low-dimensional oxide nanostructures on metals: hybrid systems with novel properties. J Vac Sci Technol B 28:1–16

    Article  Google Scholar 

  7. Noguera C (2000) Polar oxide surfaces. J Phys Cond Matter 12:R367–R410

    Article  Google Scholar 

  8. Goniakowski J, Finocchi F, Noguera C (2008) Polarity of oxide surfaces and nanostructures. Rep Prog Phys 71:016501

    Article  Google Scholar 

  9. Tasker PWJ (1979) Stability of ionic crystal surfaces. J Phys C 12:4977–4984

    Article  Google Scholar 

  10. King-Smith RD, Vanderbilt D (1993) Theory of polarization of crystalline solids. Phys Rev B 47:1651–1654

    Article  Google Scholar 

  11. Stengel M, Vanderbilt D (2009) Berry-phase theory of polar discontinuities at oxide-oxide interfaces. Phys Rev B 80:241103

    Article  Google Scholar 

  12. Stengel M (2011) Electrostatic stability of insulating surfaces: theory and applications. Phys Rev B 84:205432

    Article  Google Scholar 

  13. Garcia A, Cohen ML (1993) 1st principles ionicity scales. 1 Charge asymmetry in the solid-state. Phys Rev B 47:4215–4221

    Article  Google Scholar 

  14. Belabbes A, Furthmüller J, Bechstedt F (2013) Relation between spontaneous polarization and crystal field from first principles. Phys Rev B 87:035305

    Article  Google Scholar 

  15. Bristowe NC, Ghosez P, Littlewood PB, Artacho E (2014) The origin of two-dimensional electron gases at oxide interfaces: insights from theory. J Phys: Condens Matter 26:143201

    Google Scholar 

  16. Noguera C, Goniakowski J (2013) Polarity in oxide nano-objects. Chem Rev 113:4073–4105

    Article  Google Scholar 

  17. Goniakowski J, Noguera C, Giordano L (2004) Using polarity for engineering oxide nanostructures: structural phase diagram in free and supported MgO(111) ultrathin films. Phys Rev Lett 93:215702

    Article  Google Scholar 

  18. Goniakowski J, Noguera C, Giordano L (2007) Prediction of uncompensated polarity in ultrathin films. Phys Rev Lett 98:205701

    Article  Google Scholar 

  19. Gragnaniello L, Agnoli S, Parteder G, Barolo A, Bondino F, Allegretti F, Surnev S, Granozzi G, Netzer FP (2010) Cobalt oxide nanolayers on Pd(100): the thickness-dependent structural evolution. Surf Sci 604:2002–2011

    Article  Google Scholar 

  20. Weirum G, Barcaro G, Fortunelli A, Weber F, Schennach R, Surnev S, Netzer FP (2010) Growth and surface structure of zinc oxide layers on a Pd(111) surface. J Phys Chem C 114:15432

    Article  Google Scholar 

  21. Schennach R, Weber F, Piffl M, Weirum G, Surnev S (2012) Growth and reactivity of Zn and ZnO on Pd(111). Surf Eng 28:87–90

    Article  Google Scholar 

  22. Noguera C, Goniakowski J (2008) Polarity in oxide ultrathin films. J Phys: Condens Matter 20:264003

    Google Scholar 

  23. Kresse G, Dulub O, Diebold U (2003) Competing stabilization mechanism for the polar ZnO(0001)-Zn surface. Phys Rev B 68:245409

    Article  Google Scholar 

  24. Thiel S, Hammerl G, Schmehl A, Schneider CW, Mannhart J (2006) Tunable quasi-two-dimensional electron gases in oxide heterostructures. Science 313:1942–1945

    Article  Google Scholar 

  25. Hu XL, Michaelides A (2010) The kaolinite (001) polar basal plane. Surf Sci 604:111–117

    Article  Google Scholar 

  26. Ohtomo A, Hwang HY (2004) A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427:423–426

    Article  Google Scholar 

  27. Nakagawa N, Hwang HY, Muller DA (2006) Why some interfaces cannot be sharp. Nat Mater 5:204–209

    Article  Google Scholar 

  28. Pentcheva R, Pickett WE (2006) Charge localization or itineracy at LaAlO3/SrTiO3 interfaces: Hole polarons, oxygen vacancies, and mobile electrons. Phys Rev B 74:035112

    Article  Google Scholar 

  29. Reyren N, Thiel S, Caviglia AD, Kourkoutis LF, Hammerl G, Richter C, Schneider CW, Kopp T, Rüetschi A-S, Jaccard D, Gabay M, Muller DA, Triscone J-M, Mannhart J (2007) Superconducting interfaces between insulating oxides. Science 317:1196–1199

    Article  Google Scholar 

  30. Gabay M, Gariglio S, Triscone JM, Santander-Syro AF (2013) 2-Dimensional oxide electronic gases: interfaces and surfaces. Eur Phys J Special Topics 222:1177–1183

    Article  Google Scholar 

  31. Segal Y, Ngai JH, Reiner JW, Walker FJ, Ahn CH (2009) X-ray photoemission studies of the metal-insulator transition in LaAlO3/SrTiO3 structures grown by molecular beam epitaxy. Phys Rev B 80:241107

    Article  Google Scholar 

  32. Slooten E, Zhong Z, Molegraaf HJA, Eerkes PD, de Jong S, Massee F, van Heumen E, Kruize MK, Wenderich S, Kleibeuker JE, Gorgoi M, Hilgenkamp H, Brinkman A, Huijben M, Rijnders G, Blank DHA, Koster G, Kelly PJ, Golden MS (2013) Hard x-ray photoemission and density functional theory study of the internal electric field in SrTiO3/LaAlO3 oxide heterostructures. Phys Rev B 87:085128

    Article  Google Scholar 

  33. Kiguchi M, Entani S, Saiki K, Goto T, Koma A (2003) Atomic and electronic structure of an unreconstructed polar MgO(111) thin film on Ag(111). Phys Rev B 68:115402

    Article  Google Scholar 

  34. Ritter M, Ranke W, Weiss W (1998) Growth and structure of ultrathin FeO films on Pt(111) studied by STM and LEED. Phys Rev B 57:7240–7251

    Article  Google Scholar 

  35. Ranke W, Ritter M, Weiss W (1999) Crystal structures and growth mechanism for ultrathin films of ionic compound materials: FeO(111) on Pt(111). Phys Rev B 60:1527–1530

    Article  Google Scholar 

  36. Gubo M, Ebensperger C, Meyer W, Hammer L, Heinz K (2009) Substoichiometric cobalt oxide monolayer on Ir(100)-(1 × 1). J Phys: Condens Matter 21:474211

    Google Scholar 

  37. Ebensperger C, Gubo M, Meyer W, Hammer L, Heinz K (2010) Substrate-induced structural modulation of a CoO(111) bilayer on Ir(100). Phys Rev B 81:235405

    Article  Google Scholar 

  38. Tusche C, Meyerheim HL, Kirschner J (2007) Observation of depolarized ZnO(0001) monolayers: formation of unreconstructed planar sheets. Phys Rev Lett 99:026102

    Article  Google Scholar 

  39. Claeyssens F, Freeman CL, Allan NL, Sun Y, Ashfold MN, Harding JH (2005) Growth of ZnO thin films—experiment and theory. J Mat Chem 15:139–148

    Article  Google Scholar 

  40. Baumeier B, Krüger P, Pollmann J (2007) Structural, elastic, and electronic properties of SiC, BN, and BeO nanotubes. Phys Rev B 76:085407

    Article  Google Scholar 

  41. Wu W, Lu P, Zhang Z, Guo W (2011) Electronic and magnetic properties and structural stability of BeO sheet and nanoribbons. ACS Appl Mater Interfaces 3:4787–4795

    Article  Google Scholar 

  42. Freeman CL, Claeyssens F, Allan NL, Harding JH (2006) Graphitic nanofilms as precursors to wurtzite films: theory. Phys Rev Lett 96:066102

    Article  Google Scholar 

  43. Kresse G, Schmid M, Napetschnig E, Shishkin M, Kohler L, Varga P (2005) Structure of the ultrathin aluminum oxide film on NiAl(110). Science 308:1440–1442

    Article  Google Scholar 

  44. Goniakowski J, Noguera C (1999) Characteristics of Pd deposition on the MgO(111) surface. Phys Rev B 60:16120–16128

    Article  Google Scholar 

  45. Goniakowski J, Noguera C (2002) Microscopic mechanisms of stabilization of polar oxide surfaces: transition metals on the MgO(111) surface. Phys Rev B 66:085417

    Article  Google Scholar 

  46. Muller DA, Shashkov DA, Benedek R, Yang LH, Silcox J, Seidman DN (1998) Atomic scale observations of metal-induced gap states at {222}MgO/Cu interfaces. Phys Rev Lett 80:4741–4744

    Article  Google Scholar 

  47. Imhoff D, Laurent S, Colliex C, Backhaus-Ricoult M (1999) Determination of the characteristic interfacial electronic states of {111}Cu-MgO interfaces by ELNES. Eur Phys J A 5:9–18

    Article  Google Scholar 

  48. Tejedor C, Flores C, Louis E (1977) Metal-semiconductor interface- Si (111) and zincblende (110) junctions. J Phys C 10:2163–2177

    Article  Google Scholar 

  49. Bordier G, Noguera C (1991) Electronic structure of a metal-insulator interface—towards a theory of nonreactive adhesion. Phys Rev B 44:6361–6371

    Article  Google Scholar 

  50. Goniakowski J, Noguera C (2004) Electronic states and Schottky barrier height at metal/MgO(100) interfaces. Interf Sci 12:93–103

    Article  Google Scholar 

  51. Goniakowski J, Noguera C (2009) Polarization and rumpling in oxide monolayers deposited on metallic substrates. Phys Rev B 79:155433

    Article  Google Scholar 

  52. Pacchioni G, Giordano L, Baistrocchi M (2005) Charging of metal atoms on ultrathin MgO/Mo(100) films. Phys Rev Lett 94:226104

    Article  Google Scholar 

  53. Giordano L, Pacchioni G (2006) Charge transfers at metal/oxide interfaces: a DFT study of formation of K+ and Au species on MgO/Ag(100) ultra-thin films from deposition of neutral atoms. Phys Chem Chem Phys 8:3335–3341

    Article  Google Scholar 

  54. Ricci D, Bongiorno A, Pacchioni G, Landman U (2006) Bonding trends and dimensionality crossover of gold nanoclusters on metal-supported MgO thin films. Phys Rev Lett 97:036106

    Article  Google Scholar 

  55. Honkala K, Häkkinen H (2007) Au adsorption on regular and defected thin MgO(100) films supported by Mo. J Phys Chem C 111:4319–4327

    Article  Google Scholar 

  56. Frondelius P, Hellman A, Honkala K, Häkkinen H, Grönbeck H (2008) Charging of atoms, clusters, and molecules on metal-supported oxides: a general and long-ranged phenomenon. Phys Rev B 78:085426

    Article  Google Scholar 

  57. Sterrer M, Risse T, Pozzoni UM, Giordano L, Heyde M, Rust H-P, Pacchioni G, Freund H-J (2007) Control of the charge state of metal atoms on thin MgO films. Phys Rev Lett 98:096107

    Article  Google Scholar 

  58. Sterrer M, Risse T, Heyde M, Rust H-P, Freund H-J (2007) Crossover from three-dimensional to two-dimensional geometries of Au nanostructures on thin MgO(001) films: a confirmation of theoretical predictions. Phys Rev Lett 98:206103

    Article  Google Scholar 

  59. Barcaro G, Fortunelli A, Granozzi G (2008) Metal adsorption on oxide polar ultrathin films. Phys Chem Chem Phys 10:1876–1882

    Article  Google Scholar 

  60. Grönbeck H (2006) Mechanism for NO2 charging on metal supported MgO. J Phys Chem B 110:11977–11981

    Article  Google Scholar 

  61. Hellman A, Klacar S, Grönbeck H (2009) Low temperature CO oxidation over supported ultrathin MgO films. J Am Chem Soc 131:16636

    Article  Google Scholar 

  62. Gonchar A, Risse T, Freund H-J, Giordano L, Di Valentin C, Pacchioni G (2011) Activation of oxygen on \({\text{MgO}}:{\text{O}}_{2}^{. - }\) radical ion formation on thin, Metal-Supported MgO(001) Films. Angew Chem Int Ed 50:2635–2638

    Google Scholar 

  63. Goniakowski J, Noguera C, Giordano L, Pacchioni G (2009) Adsorption of metal adatoms on FeO(111) and MgO(111) monolayers: effects of charge state of adsorbate on rumpling of supported oxide film. Phys Rev B 80:125403

    Article  Google Scholar 

  64. Benedetti S, Stavale F, Valeri S, Noguera C, Freund H-J, Goniakowski J, Nilius N (2013) Steering the growth of metal Ad-particles via Interface Interactions between a MgO thin film and a Mo support. Adv Funct Materials 23:75–80

    Article  Google Scholar 

  65. Sun YN, Qin ZH, Lewandowski M, Carrasco E, Sterrer M, Shaikhutdinov S, Freund H-J (2009) Monolayer iron oxide film on platinum promotes low temperature CO oxidation. J Catal 266:359–368

    Article  Google Scholar 

  66. Sun YN, Giordano L, Goniaksowski J, Lewandowski M, Qin ZH, Noguera C, Shaikhutdinov S, Pacchioni G, Freund H-J (2010) The interplay between structure and CO oxidation catalysis on metal-supported ultrathin oxide films. Angew Chem Int Ed 49:4418–4421

    Article  Google Scholar 

  67. Giordano L, Lewandowski M, Groot IMN, Sun YN, Goniakowski J, Noguera C, Shaikhutdinov S, Pacchioni G, Freund H-J (2010) Oxygen-induced transformations of an FeO(111) film on Pt(111): a combined DFT and STM study. J Phys Chem C 114:21504–21509

    Article  Google Scholar 

  68. Giordano L, Pacchioni G, Noguera C, Goniakowski J (2014) Identification of active sites in a realistic model of strong metal-support interaction catalysts: the case of platinum (111)-supported iron oxide film. ChemCatChem 6:185–190

    Article  Google Scholar 

  69. He YB, Stierle A, Li WX, Farkas A, Kasper N, Over H (2008) Oxidation of Ir(111): from O-Ir-O trilayer to bulk oxide formation. J Phys Chem C 112:11946–11953

    Article  Google Scholar 

  70. Rogal J, Reuter K, Scheffler M (2008) CO oxidation on Pd(100) at technologically relevant pressure conditions: first-principles kinetic Monte Carlo study. Phys Rev B 77:155410

    Article  Google Scholar 

  71. Gustafson J, Mikkelsen A, Borg M, Lundgren E, Köhler L, Kresse G, Schmid M, Varga P, Yuhara J, Torrelles X, Quirós C, Andersen JN (2004) Self-limited growth of a thin oxide layer on Rh(111). Phys Rev Lett 92:126102

    Article  Google Scholar 

  72. Flege JI, Hrbek J, Sutter P (2008) Structural imaging of surface oxidation and oxidation catalysis on Ru(0001). Phys Rev B 78:165407

    Article  Google Scholar 

  73. Franchini C, Podloucky R, Allegretti F, Li F, Parteder G, Surnev S, Netzer FP (2009) Structural and vibrational properties of two-dimensional Mn x O y layers on Pd(100): experiments and density functional theory calculations. Phys Rev B 79:035420

    Article  Google Scholar 

  74. Martynova Y, Soldemo M, Weissenrieder J, Sachert S, Polzin S, Widdra W, Shaikhutdinov S, Freund H-J (2013) CO oxidation over monolayer manganese oxide films on Pt(111). Catal Lett 143:1108–1115

    Article  Google Scholar 

  75. Hwang HY, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N, Tokura Y (2012) Emergent phenomena at oxide interfaces. Nature Mater 11:103–113

    Article  Google Scholar 

  76. Mannhart J, Blank DHA, Hwang HY, Millis AJ, Triscone J-M (2008) Two-dimensional electron gases at oxide interfaces. MRS Bull 333:1027–1034

    Article  Google Scholar 

  77. Goniakowski J, Noguera C (2014) Conditions for electronic reconstruction at stoichiometric polar/polar interfaces. J Phys: Condens Matter 26:485010

    Google Scholar 

  78. Harrison A, Kraut EA, Waldrop JR, Grant RW (1978) Polar heterojunction interfaces. Phys Rev 18:4402–4410

    Article  Google Scholar 

  79. Martin RM (1980) Atomic reconstruction at polar interfaces of semiconductors. J Vac Sci Technol 17:978–981

    Article  Google Scholar 

  80. Tsukazaki A, Ohtomo A, Kita T, Ohno Y, Ohno H, Kawasaki M (2007) Quantum Hall effect in polar oxide heterostructures. Science 315:1388–1391

    Google Scholar 

  81. Das H, Spaldin NA, Waghmare UV, Saha-Dasgupta T (2010) Chemical control of polar behavior in bicomponent short-period superlattices. Phys Rev B 81:235112

    Article  Google Scholar 

  82. Annadi A, Zhang Q, Wang XR, Tuzla N, Gopinadhan K, Lü WM, Barman AR, Liu ZQ, Srivastava A, Saha S, Zhao YL, Zeng SW, Dhar S, Olsson E, Gu B, Yunoki S, Maekawa S, Hilgenkamp H, Venkatesan T, Ariando (2013) Anisotropic two-dimensional electron gas at the LaAlO3/SrTiO3 (110) interface. Nature Comm 4:1838

    Article  Google Scholar 

  83. Herranz G, Sánchez F, Dix N, Scigaj M, Fontcuberta J (2012) High mobility conduction at (110) and (111) LaAlO3/SrTiO3 interfaces. Sci Rep 2:758

    Article  Google Scholar 

  84. Xue M, Guo Q, Wu K, Guo J (2009) Epitaxial growth of ZnO films on thin FeO(111) layers. J Cryst Growth 311:3918–3923

    Article  Google Scholar 

  85. Betancourt J, Saavedra-Arias JJ, Burton JD, Ishikawa Y, Tsymbal EY, Velev JP (2013) Polarization discontinuity induced two-dimensional electron gas at ZnO/Zn(Mg)O interfaces: a first-principles study. Phys Rev B 88:085418

    Article  Google Scholar 

  86. Ohtomo A, Kawasaki M, Ohkubo I, Koinuma H, Yasuda T, Segawa Y (1999) Structure and optical properties of ZnO/Mg0.2Zn0.8O superlattices. Appl Phys Lett 75:980–982

    Article  Google Scholar 

  87. Dutta S, Pati SK (2010) Novel properties of graphene nanoribbons: a review. J Mater Chem 20:8207–8223

    Article  Google Scholar 

  88. Acik M, Chabal YJ (2011) Nature of graphene edges: a review. Jap J Appl Phys 50:070101

    Article  Google Scholar 

  89. Goniakowski J, Noguera C (2011) Polarity at the nanoscale. Phys Rev B 83:115413

    Article  Google Scholar 

  90. Güller F, Llois AM, Goniakowski J, Noguera C (2013) Polarity effects in unsupported polar nanoribbons. Phys Rev B 87:205423

    Article  Google Scholar 

  91. Goniakowski J, Giordano L, Noguera C (2013) Polarity compensation in low-dimensional oxide nanostructures: the case of metal-supported MgO nanoribbons. Phys Rev B 87:035405

    Article  Google Scholar 

  92. Botello-Mendez AR, Martinez-Martinez MT, Lopez-Urias F, Terrones M, Terrones H (2007) Metallic edges in zinc oxide nanoribbons. Chem Phys Lett 448:258–263

    Article  Google Scholar 

  93. Botello-Mendez AR, Lopez-Urias F, Terrones M, Terrones H (2008) Magnetic behavior in zinc oxide zigzag nanoribbons. Nano Lett 8:1562–1565

    Article  Google Scholar 

  94. Topsakal M, Cahangirov S, Bekaroglu E, Ciraci S (2009) First-principles study of zinc oxide honeycomb structures. Phys Rev B 80:235119

    Article  Google Scholar 

  95. Wang Y, Wang B, Zhang Q, Shi D, Yunoki S, Kong F, Xu N (2012) A simple capacitor model and first-principles study of carbon-doped zigzag ZnO nanoribbons. Solid State Comm 152:534–539

    Article  Google Scholar 

  96. Tang Q, Li F, Zhou Z, Chen Z (2011) Versatile electronic and magnetic properties of corrugated V2O5 two-dimensional crystal and its derived one-dimensional nanoribbons: a computational exploration. J Phys Chem C 115:11983–11990

    Article  Google Scholar 

  97. Bollinger MV, Lauritsen JV, Jacobsen KW, Nørskov JK, Helveg S, Besenbacher F (2001) One-dimensional metallic edge states in MoS2. Phys Rev Lett 87:196803

    Article  Google Scholar 

  98. Li Y, Zhou Z, Zhang S, Chen Z (2008) MoS2 nanoribbons: high stability and unusual electronic and magnetic properties. J Am Chem Soc 130:16739–16744

    Article  Google Scholar 

  99. Botello-Mendez AR, Lopez-Urias F, Terrones M, Terrones H (2009) Metallic and ferromagnetic edges in molybdenum disulfide nanoribbons. Nanotechnology 20:325703

    Article  Google Scholar 

  100. Ataca C, Sahin H, Akturk E, Ciraci S (2011) Mechanical and electronic properties of MoS2 nanoribbons and their defects. J Phys Chem C 115:3934–3941

    Article  Google Scholar 

  101. Erdogan E, Popov IH, Enyashin AN, Seifert G (2012) Transport properties of MoS2 nanoribbons: edge priority. Eur Phys J B 85:33

    Article  Google Scholar 

  102. Pan H, Zhang YW (2012) Edge-dependent structural, electronic and magnetic properties of MoS2 nanoribbons. J Mater Chem 22:7280–7290

    Article  Google Scholar 

  103. Yang SQ, Li DX, Zhang TR, Tao ZL, Chen J (2012) First-principles study of zigzag MoS2 nanoribbon as a promising cathode material for rechargeable Mg batteries. J Phys Chem C 116:1307–1312

    Article  Google Scholar 

  104. Zhang S, Ma J (2011) Width- and edge-dependent stability, electronic structures, and magnetic properties of graphene-like and wurtzite ZnS nanoribbons. J Phys Chem C 115:4466–4475

    Article  Google Scholar 

  105. Ding Y, Wang Y, Ni J (2009) The stabilities of boron nitride nanoribbons with different hydrogen-terminated edges. Appl Phys Lett 94:233107

    Article  Google Scholar 

  106. Chen W, Li Y, Yu G, Li C-Z, Zhang SB, Zhou Z, Chen Z, Chen J (2010) Hydrogenation: a simple approach to realize semiconductor-half-metal-metal transition in boron nitride nanoribbons. J Am Chem Soc 132:1699–1705

    Article  Google Scholar 

  107. Lopez-Bezanilla A, Huang J, Terrones H, Sumpter BG (2011) Boron nitride nanoribbons become metallic. Nano Lett 11:3267–3273

    Article  Google Scholar 

  108. Wu M, Wu X, Pei Y, Zeng XC (2011) Inorganic nanoribbons with unpassivated zigzag edges: half metallicity and edge reconstruction. Nano Res 4:233–239

    Article  Google Scholar 

  109. Li H, Dai J, Li J, Zhang S, Zhou J, Zhang L, Chu W, Chen D, Zhao H, Yang J, Wu Z (2010) Electronic structures and magnetic properties of GaN sheets and nanoribbons. J Phys Chem C 114:11390–11394

    Article  Google Scholar 

  110. Finocchi F, Goniakowski J (2007) The effects of exchange and correlation on the computed equilibrium shapes of wet MgO crystallites. Surf Sci 601:4144–4148

    Article  Google Scholar 

  111. Geysermans P, Finocchi F, Goniakowski J, Hacquart R, Jupille J (2009) Combination of (100), (110) and (111) facets in MgO crystals shapes from dry to wet environment. Phys Chem Chem Phys 11:2228–2233

    Article  Google Scholar 

  112. Güller F, Llois AM, Goniakowski J, Noguera C (2015) Prediction of structural and metal-to-semiconductor phase transitions in nanoscale MoS2, WS2, and other transition metal dichalcogenide zigzag ribbons. Phys Rev B 91:075407

    Article  Google Scholar 

  113. Bristowe NC, Stengel M, Littlewood PB, Artacho E, Pruneda JM (2013) One-dimensional half-metallic interfaces of two-dimensional honeycomb insulators. Phys Rev B 88:161411

    Article  Google Scholar 

  114. Gibertini M, Pizzi G, Marzari N (2014) Engineering polar discontinuities in honeycomb lattices. Nature Comm 5:5157

    Article  Google Scholar 

  115. Ferrari AM, Casassa S, Pisani C (2005) Electronic structure and morphology of MgO submonolayers at the Ag(001) surface: an ab initio model study. Phys Rev B 71:155404

    Article  Google Scholar 

  116. Ferrari AM, Casassa S, Pisani C, Altieri S, Rota A, Valeri S (2005) Polar and non-polar domain borders in MgO ultrathin films on Ag(001). Surf Sci 588:160–166

    Article  Google Scholar 

  117. Benedetti S, Nilius N, Torelli P, Renaud G, Freund H-J, Valeri S (2011) Competition between polar and nonpolar growth of MgO thin films on Au(111). J Phys Chem C 115:23043

    Article  Google Scholar 

  118. Pan Y, Benedetti S, Noguera C, Giordano L, Goniakowski J, Nilius N (2012) Compensating edge polarity: a means to alter the growth orientation of MgO nanostructures on Au(111). J Phys Chem C 116:11126

    Article  Google Scholar 

  119. Nilius N, Benedetti S, Pan Y, Myrach P, Noguera C, Giordano L, Goniakowski J (2012) Electronic and electrostatic properties of polar oxide nanostructures: MgO(111) islands on Au(111). Phys Rev B 86:205410

    Article  Google Scholar 

  120. Helveg S, Lauritsen JV, Lægsgaard E, Stensgaard I, Nørskov JK, Clausen BS, Topsøe H, Besenbacher F (2000) Atomic-scale structure of single-layer MoS2 nanoclusters. Phys Rev Lett 84:951–954

    Article  Google Scholar 

  121. Lauritsen JV, Bollinger MV, Lægsgaard E, Jacobsen KW, Nørskov JK, Clausen BS, Topsøe H, Besenbacher F (2004) Atomic-scale insight into structure and morphology changes of MoS2 nanoclusters in hydrotreating catalysts. J Catal 221:510–522

    Article  Google Scholar 

  122. Liu Y, Bhowmick S, Yakobson BI (2011) BN white graphene with “Colorful” edges: the energies and morphology. Nano Lett 11:3113–3116

    Article  Google Scholar 

  123. Schweiger H, Raybaud P, Kresse G, Toulhoat H (2002) Shape and edge sites modifications of MoS2 catalytic nanoparticles induced by working conditions: a theoretical study. J Catal 207:76–87

    Article  Google Scholar 

  124. Valeri S, Altieri S, del Pennino U, di Bona A, Luches P, Rota A (2002) Scanning tunnelling microscopy of MgO ultrathin films on Ag(001). Phys Rev B 65:245410

    Article  Google Scholar 

  125. Caffio M, Atrei A, Cortigiani B, Rovida G (2006) STM study of the nanostructures prepared by deposition of NiO on Ag(001) J Phys : Condens Matter 18:2379–2384

    Google Scholar 

  126. Steurer W, Allegretti F, Surnev S, Barcaro G, Sementa L, Negreiros F, Fortunelli A, Netzer FP (2011) Metamorphosis of ultrathin Ni oxide nanostructures on Ag(100). Phys Rev B 84:115446

    Article  Google Scholar 

  127. Cabailh G, Lazzari R, Cruguel H, Jupille J, Savio L, Smerieri M, Orzelli A, Vattuone L, Rocca M (2011) Stoichiometry-dependent chemical activity of supported MgO(100) films. J Phys Chem A 115:7161–7168

    Article  Google Scholar 

  128. Pal J, Smerieri M, Celasco E, Savio L, Vattuone L, Ferrando R, Tosoni S, Giordano L, Pacchioni G, Rocca M (2014) How growing conditions and interfacial oxygen affect the final morphology of MgO/Ag(100) films. J Phys Chem C 118:26091–26102

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudine Noguera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Noguera, C., Goniakowski, J. (2016). Electrostatics and Polarity in 2D Oxides. In: Netzer, F., Fortunelli, A. (eds) Oxide Materials at the Two-Dimensional Limit. Springer Series in Materials Science, vol 234. Springer, Cham. https://doi.org/10.1007/978-3-319-28332-6_7

Download citation

Publish with us

Policies and ethics