Skip to main content

Cluster-Based Outlier Detection Using Unsupervised Extreme Learning Machines

  • Conference paper
  • First Online:
Proceedings of ELM-2015 Volume 1

Part of the book series: Proceedings in Adaptation, Learning and Optimization ((PALO,volume 6))

Abstract

Outlier detection is an important data mining task, whose target is to find the abnormal or atypical objects from a given data set. The techniques for detecting outliers have a lot of applications, such as credit card fraud detection, environment monitoring, etc. In this paper, we proposed a new definition of outlier, called cluster-based outlier. Comparing with the existing definitions, the cluster-based outlier is more suitable for the complicated data sets that consist of many clusters with different densities. To detect cluster-based outliers, we first split the given data set into a number of clusters using unsupervised extreme learning machines. Then, we further design a pruning method technique to efficiently compute outliers in each cluster. at last, the effectiveness and efficiency of the proposed approaches are verified through plenty of simulation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hawkins, D.M.: Identification of Outliers. Springer, New York (1980)

    Book  MATH  Google Scholar 

  2. Barnett, V., Lewis, T.: Outliers in Statistical Data. Wiley, New York (1994)

    MATH  Google Scholar 

  3. Rousseeuw, P.J., Leroy, A.M.: Robust Regression and Outlier Detection. Wiley, New York (2005)

    Google Scholar 

  4. Knorr, E.M., Ng, R.T.: Algorithms for mining distancebased outliers in large datasets. In: Proceedings of the International Conference on Very Large Data Bases, pp. 392–403 (1998)

    Google Scholar 

  5. Ramaswamy, S., Rastogi, R., Shim, K.: Efficient algorithms for mining outliers from large data sets. ACM SIGMOD Rec. 29(2), 427–438 (2000)

    Article  Google Scholar 

  6. Angiulli, F., Pizzuti, C.: Outlier mining in large high-dimensional data sets. IEEE Trans. Knowl. Data Eng. 17(2), 203–215 (2005)

    Article  MathSciNet  Google Scholar 

  7. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: Lof: identifying density-based local outliers. ACM Sigmod Rec. 29(2), 93–104 (2000)

    Article  Google Scholar 

  8. Huang, G., Song, S., Gupta, J.N.D., Wu, C.: Semi-supervised and unsupervised extreme learning machines. IEEE Trans. Cybern. 44(12), 2405–2417 (2014)

    Article  Google Scholar 

  9. Huang, G., Zhu, Q., Siew, C.-K.: Extreme learning machine: a new learning scheme of feedforward neural networks. Proc. Int. Joint Conf. Neural Netw. 2, 985–990 (2004)

    Google Scholar 

  10. Huang, G., Zhu, Q., Siew, C.-K.: Extreme learning machine: theory and applications. Neurocomputing 70, 489–501 (2006)

    Article  Google Scholar 

  11. Huang, G.: What are extreme learning machines? Filling the gap between Frank Rosenblatt’s Dream and John von Neumann’s Puzzle. Cogn. Comput. 7(3), 263–278 (2015)

    Article  Google Scholar 

  12. Cherkassky, V.: The nature of statistical learning theory. IEEE Trans. Neural Netw. 8(6), 1564 (1997)

    Article  Google Scholar 

  13. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  14. Huang, G., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B 42(2), 513–529 (2012)

    Article  Google Scholar 

  15. Rong, H., Huang, G., Sundararajan, N., Saratchandran, P.: Online sequential fuzzy extreme learning machine for function approximation and classification problems. IEEE Trans. Syst. Man Cybern. Part B 39(4), 1067–1072 (2009)

    Article  Google Scholar 

  16. Liang, N., Huang, G., Saratchandran, P., Sundararajan, N.: A Fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans. Neural Netw. 17(6), 1411–1423 (2006)

    Article  Google Scholar 

  17. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: An Efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881–892 (2001)

    Article  Google Scholar 

  18. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  19. Andrew, Y., Ng, M.I., Jordan, Y.W.: On spectral clustering: analysis and an algorithm. Adv. Neural Inform. Process. Syst. 2, 849C856 (2002)

    Google Scholar 

  20. Bengio, Yoshua: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–127 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. He, Z., Xu, X., Deng, S.: Discovering cluster-based local outliers. Pattern Recog. Lett. 24(9), 1641–1650 (2003)

    Article  MATH  Google Scholar 

  22. Bay, S.D, Schwabacher, M.: Mining distance-based outliers in near linear time with randomization and a simple pruning rule. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 29–38 (2003)

    Google Scholar 

  23. Angiulli, F., Fassetti, F.: Very efficient mining of distance-based outliers. In: Proceedings of the Sixteenth ACM Conference on Information and Knowledge Management, pp. 791–800 (2007)

    Google Scholar 

  24. Guttman, A.: R-trees: a dynamic index structure for spatial searching. ACM (1984)

    Google Scholar 

  25. Patella, M., Ciaccia, P., Zezula, P.: M-tree: an efficient access method for similarity search in metric spaces. In: Proceedings of the International Conference on Very Large Databases (VLDB). Athens, Greece (1997)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Basic Research 973 Program of China under Grant No.2012CB316201, the National Natural Science Foundation of China under Grant Nos. 61033007, 61472070.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xite Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, X., Shen, D., Bai, M., Nie, T., Kou, Y., Yu, G. (2016). Cluster-Based Outlier Detection Using Unsupervised Extreme Learning Machines. In: Cao, J., Mao, K., Wu, J., Lendasse, A. (eds) Proceedings of ELM-2015 Volume 1. Proceedings in Adaptation, Learning and Optimization, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-28397-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28397-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28396-8

  • Online ISBN: 978-3-319-28397-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics