Skip to main content

A Study on GMLVQ Convex and Non-convex Regularization

  • Conference paper
  • First Online:
Advances in Self-Organizing Maps and Learning Vector Quantization

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 428))

Abstract

In this work we investigate the effect of convex and non-convex regularization on the Generalized Matrix Learning Vector Quantization (GMLVQ) classifier, in order to obtain sparse models that guarantee a better generalization ability. Three experiments are used for evaluating six different sparse models in terms of classification accuracy and qualitative sparseness. The results show that non-convex models outperform traditional convex sparse models and non-regularized GMLVQ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antoniadis, A., Fan, J.: Regularization of wavelet approximations. J. Am. Stat. Assoc. 939–967 (2011)

    Google Scholar 

  2. Bertsekas, D.P.: Nonlinear programming. Athena Sci. (1999)

    Google Scholar 

  3. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004)

    Google Scholar 

  4. Candes, E., Tao, T.: The dantzig selector: statistical estimation when p is much larger than n. Ann. Stat. 2313–2351 (2007)

    Google Scholar 

  5. Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96(456), 1348–1360 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Figueiredo, M.A.: Adaptive sparseness for supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 25(9), 1150–1159 (2003)

    Article  MathSciNet  Google Scholar 

  7. Hammer, B., Villmann, T.: Generalized relevance learning vector quantization. Neural Netw. 15(8), 1059–1068 (2002)

    Article  Google Scholar 

  8. Kaden, M., Lange, M., Nebel, D., Riedel, M., Geweniger, T., Villmann, T.: Aspects in classification learning-review of recent developments in learning vector quantization. Found. Comput. Decis. Sci. 39(2), 79–105 (2014)

    MathSciNet  Google Scholar 

  9. Kohonen, T.: Self-organizing maps, vol. 30. Springer (2001)

    Google Scholar 

  10. Leahy, R.M., Jeffs, B.D.: On the design of maximally sparse beamforming arrays. IEEE Trans. Antennas Propag. 39(8), 1178–1187 (1991)

    Article  Google Scholar 

  11. Lee, H., Battle, A., Raina, R., Ng, A.Y.: Efficient sparse coding algorithms. In: Advances in Neural Information Processing Systems, pp. 801–808 (2006)

    Google Scholar 

  12. Ng, A.Y.: Feature selection, l 1 vs. l 2 regularization, and rotational invariance. In: Proceedings of the Twenty-First International Conference on Machine Learning, p. 78. ACM (2004)

    Google Scholar 

  13. Nikolova, M.: Local strong homogeneity of a regularized estimator. SIAM J. Appl. Math. 61(2), 633–658 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Nova, D., Estévez, P.A.: A review of learning vector quantization classifiers. Neural Comput. Appl. 25(3–4), 511–524 (2014)

    Article  Google Scholar 

  15. Osborne, M.R., Presnell, B., Turlach, B.A.: A new approach to variable selection in least squares problems. IMA J. Numer. Anal.-Inst. Math. Appl. 20(3), 389–404 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Sato, A., Yamada, K.: Generalized learning vector quantization. Adv. Neural Inf. Process. Syst. 423–429 (1996)

    Google Scholar 

  17. Schneider, P., Bunte, K., Stiekema, H., Hammer, B., Villmann, T., Biehl, M.: Regularization in matrix relevance learning. IEEE Trans. Neural Netw. 21(5), 831–840 (2010)

    Article  Google Scholar 

  18. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Royal Stat. Soc. Ser. B (Methodological) 267–288 (1996)

    Google Scholar 

  19. Tropp, J., et al.: Just relax: convex programming methods for identifying sparse signals in noise. IEEE Trans. Inf. Theor. 52(3), 1030–1051 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Weston, J., Elisseeff, A., Schölkopf, B., Tipping, M.: Use of the zero norm with linear models and kernel methods. J. Mach. Learn. Res. 3, 1439–1461 (2003)

    MATH  MathSciNet  Google Scholar 

  21. Zhang, T.: Some sharp performance bounds for least squares regression with l1 regularization. Ann. Stat. 37(5A), 2109–2144 (2009)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This contribution was funded by CONICYT-CHILE under grants Fondecyt 1140816 and DPI20140090.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo A. Estévez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Nova, D., Estévez, P.A. (2016). A Study on GMLVQ Convex and Non-convex Regularization. In: Merényi, E., Mendenhall, M., O'Driscoll, P. (eds) Advances in Self-Organizing Maps and Learning Vector Quantization. Advances in Intelligent Systems and Computing, vol 428. Springer, Cham. https://doi.org/10.1007/978-3-319-28518-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28518-4_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28517-7

  • Online ISBN: 978-3-319-28518-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics